【題目】設(shè)計(jì)一個(gè)算法計(jì)算1×3×5×7×…×99值的算法畫出程序框圖,寫出程序.

【答案】見解析;

【解析】試題分析:由于本題要求1×3×5×…×99的累乘積的值,故要采用循環(huán)結(jié)構(gòu)來解決此問題;根據(jù)題意判斷循環(huán)體應(yīng)為累乘的形式,i>99應(yīng)為循環(huán)終止的條件;

按照DO-LOOP循環(huán)結(jié)構(gòu)語句的模式寫出程序語句,繪制出該算法的程序框圖即可.

試題解析:算法步驟如下:

第一步:S1;

第二步:i3

第三步:SS×i;

第四步:ii2

第五步:判斷i是否大于99,若是轉(zhuǎn)到第六步;否則轉(zhuǎn)到第三步,繼續(xù)執(zhí)行第三步,第四步,第五步;

第六步:輸出S;

第七步:算法結(jié)束.

相應(yīng)的程序框圖如圖所示.

相應(yīng)的程序如下:(1)

(2)本題中算法程序也可用WHILE語句編寫:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)證明: 當(dāng)時(shí), .

(Ⅱ)證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,EAB的中點(diǎn),FAA1的中點(diǎn).求證:CED1FDA三線交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), , .

(1)當(dāng)時(shí),求的極值;

(2)令,求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在處的切線與直線平行,則實(shí)數(shù)____

當(dāng)a≤0時(shí),若方程有且只有一個(gè)實(shí)根,則實(shí)數(shù)的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求證:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)曲線上有3個(gè)點(diǎn)到曲線的距離等于1,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案