小明和同桌小聰一起合作探索:如圖,一架5米長的梯子AB斜靠在鉛直的墻壁AC上,這時梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動多少米?

(1)小明的思路如下,請你將小明的解答補充完整:
解:設點B將向左移動x米,即BE=x,則:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2
得方程為:     , 解方程得:    ,
∴點B將向左移動    米.
(2)解題回顧時,小聰提出了如下兩個問題:
①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會是1.8米嗎?為什么?
②梯子頂端下滑的距離與梯子底端向左移動的距離能相等嗎?為什么?
請你解答小聰提出的這兩個問題.

(1) (舍去),1.6
(2)①不會②有可能

解析試題分析:(1)根據(jù)題意及勾股定理可知,第一個空應該填,   …1分
解方程可得,(舍去)                                        …3分
∴點B將向左移動  1.6 米.                                                …4分                      
(2)①不會是1.8米                                                        …5分
理由:若AD=BE=1.8,則DC=4.8-1.8=3,EC=1.4+1.8=3.2
∵3.22+ 32≠52 ∴該題的答案不會是0.9米.                                   …7分
②有可能                                                                  …8分
理由:設梯子頂端從A處下滑a米,點B向左也移動a米,
則有(a+1.4)2+(4.8-a)2=52
解得:a =3.4或a =0(舍去).
∴當梯子頂端從A處下滑3.4米時,點B向左也移動3.4米
即:梯子頂端下滑的距離與梯子底端向左移動的距離有可能相等.                …10分
考點:本小題主要考查平面幾何在實際問題中的應用,考查學生應用函數(shù)知識解決實際問題的能力.
點評:解決實際問題時,要注意實際問題的定義域,還要注意靈活轉(zhuǎn)化,將實際問題轉(zhuǎn)化為熟悉的數(shù)學問題解決.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時, 求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設,
證明:.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).

(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商店將進貨價10元的商品按每個18元出售時,每天可賣出60個.商店經(jīng)理到市場做了一番調(diào)研后發(fā)現(xiàn),如將這種商品的售價(在每個18元的基礎(chǔ)上)每提高1元,則日銷售量就減少5個;如將這種商品的售價(在每個18元的基礎(chǔ)上)每降低1元,則日銷售量就增加10個.為獲得每日最大的利潤,此商品售價應定為每個多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務,每件產(chǎn)品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一中型號的零件.設加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設完成A 型零件加工所需時間為小時,寫出的解析式;
(2)為了在最短時間內(nèi)完成全部生產(chǎn)任務,x應取何值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元,
①求S關(guān)于的函數(shù)表達式;
②求該公司可獲得的最大毛利潤,并求出此時相應的銷售單價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在的函數(shù),對任意的、,都有,且當時,.
(1)證明:當時,;
(2)判斷函數(shù)的單調(diào)性并加以證明;
(3)如果對任意的、恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長方形,豬圈正面的造價為每平方米12元,側(cè)面的造價為每平方米80元,屋頂造價為1120元.如果墻高3m,且不計豬圈背面的費用,問:如何設計能使豬圈的總 造價最低?最低總造價是多少?

查看答案和解析>>

同步練習冊答案