已知函數(shù)f(x)=x2-2|x|-3,x∈R
(1)判斷f(x)的奇偶性;
(2)畫出函數(shù)f(x)的圖象;
(3)求f(x)的單調(diào)增區(qū)間.
考點(diǎn):函數(shù)圖象的作法,函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用函數(shù)的奇偶性的定義即可判斷,
(2)去掉絕對(duì)值,化為分段函數(shù),繪圖即可,
(3)利用圖象,直接看出單調(diào)區(qū)間.
解答: 解:(1)∵f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),
∴f(x)為偶函數(shù),
(2)∵f(x)=x2-2|x|-3=
x2-2x-3,x≥0
x2+2x-3,x<0
,
圖象如圖所示,
(3)由圖象可以看出,f(x)的單調(diào)在增區(qū)間為(-
1
2
,0)和(
1
2
,+∞)
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性和單調(diào)性以及含有絕對(duì)值函數(shù)的圖象的畫法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+(4a-4)x+a2-8a+4(x∈R),g(x)與f(x)圖象關(guān)于直線x=1對(duì)稱.
(Ⅰ)求g(x)解析式;
(Ⅱ)設(shè)函數(shù)h(x)=2x3+3ag(x),如果h(x)在開區(qū)間(0,1)上存在極小值,求a的取值范圍;
(Ⅲ)若關(guān)于x的不等式g(x)≥x+a2-5a+11在區(qū)間[0,2]有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD底面ABCD是直角梯形,AB⊥AD,且AD與BC平行,AD=2AB=2BC=2,△PAD是以P為直角頂點(diǎn)的等腰直角三角形,且二面角P-AD-C為直二面角.
(1)求證:PD⊥平面PAB;
(2)求AD與平面PCD所成角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
(1)0.0081 
1
4
+(4 -
3
4
2+(
8
 -
4
3
-16-0.75
(2)lg5+lg2-(-
1
3
-2+(
2
-1)0+log28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知二元一次不等式組
x-y+1≤0
y≤4
x≥0

(1)在圖中畫出不等式組表示的平面區(qū)域.
(2)求所表示的平面區(qū)域的面積
(3)若z=2x+y,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log2
x+1
x-1
;
(1)求f(x)的定義域和值域;
(2)判斷f(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-1.當(dāng)a>ln2-1且x>0時(shí),證明:f(x)>x2-2ax.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2+2ax+1-a,
(Ⅰ)若函數(shù)f(x)在區(qū)間[0,1]上的最大值為2,求實(shí)數(shù)a的值;
(Ⅱ)若方程f(x)=0的根一個(gè)在區(qū)間(-1,0)內(nèi),另一個(gè)在區(qū)間(1,2)內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
lg(1-x)
 的定義域?yàn)?div id="7pr3ddb" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案