,分別包含,個(gè)互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個(gè)圖包含            個(gè)互不重疊的單位正方形.
圖1中包含1個(gè)單位正方形,圖2在圖1的基礎(chǔ)上增加了4個(gè)單位正方形,有1+4=5個(gè)單位正方形,圖3在圖2的基礎(chǔ)上增加了2×4=8個(gè)單位正方形,有5+5=13個(gè)單位正方形,圖4在圖3的基礎(chǔ)上增加了3×4=12個(gè)單位正方形,有13+12=25個(gè)單位正方形。由此規(guī)律可知,第個(gè)圖在第個(gè)圖的基礎(chǔ)上增加了個(gè)單位正方形,所以第個(gè)圖中有個(gè)單位正方形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)
把正整數(shù)按從小到大順序排列成下列數(shù)表,數(shù)表中第行共有個(gè)正整數(shù):

設(shè)是位于數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù)
(1)若,求的值;
(2)記,求數(shù)列的通項(xiàng)公式;
(3)猜想的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形中,.若,的距離之比為,則可推算出:.試用類比的方法,推想出下述問(wèn)題的結(jié)果.在上面的梯形中,延長(zhǎng)梯形兩腰相交于點(diǎn),設(shè)的面積分別為的距離之比為,則的面積的關(guān)系是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

中,得出的一般性結(jié)論是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面幾何中,有如下結(jié)論:三邊相等的三角形內(nèi)任意一點(diǎn)到三角形三邊的距離之和為定值。拓展到空間,類比平面幾何的上述結(jié)論,可得:四個(gè)面均為等邊三角形的四面體內(nèi)任意一點(diǎn)_________________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)類比平面直角三角形的勾股定理,試給出空間中四面體性質(zhì)的猜想,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,這些等式反映了自然數(shù)間的某種規(guī)律,設(shè)n表示自然數(shù),用關(guān)于n的等式表示為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖2中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,則 ,若,則 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)x>0,從不等式,啟發(fā)我們可推廣到:x+n+1,則括號(hào)內(nèi)應(yīng)填寫(xiě)的是      ▲        

查看答案和解析>>

同步練習(xí)冊(cè)答案