函數(shù)f(x)=x2-2(2a-1)x+8?(a∈R).
(1)若f(x)在[2,+∞)的最小值為6,求a的值.
(2)若f(x)在[a,+∞)上為單調遞增函數(shù),且f(x)>0,求實數(shù)a的取值范圍.
【答案】分析:函數(shù)f(x)=x2-2(2a-1)x+8圖象開口向上,且其對稱軸為x=2a-1,
(1)討論對稱軸與區(qū)間的位置,利用單調性確定出最小值在何處取到,利用最小最小值為6建立方程求參數(shù)a的值即可.
(2)本題要根據參數(shù)a的符號來確定函數(shù)在[a,+∞)上單調性與已知比對,來求參數(shù)a的范圍.
解答:解:由題意函數(shù)圖象開口向上,且其對稱軸為x=2a-1,
(1)當2a-1≥2,即a≥時,有f(x)min=f(2a-1)=6
   即(2a-1)2-2(2a-1)(2a-1)+8=6,即4a2-4a+9=6,即4a2-4a+3=0,由于△<0,此方程無解
   當2a-1<2,即a<時,有f(x)min=f(2)=6
   即4-4(2a-1)+8=6,解得a=,符合題意.
   故
 (2)若f(x)在[a,+∞)上為單調遞增函數(shù),由題意知,需要2a-1≤a,解得a≤1   ①
   又由f(x)在[a,+∞)上為單調遞增函數(shù)知f(a)>0,即a2-2(2a-1)a+8>0
   解得
   又由①得
   故實數(shù)a的取值范圍是
點評:本題考點是二次函數(shù)的性質,考查利用二次函數(shù)的最值建立方程求參數(shù),本題需要根據條件進行屋梁轉化,且轉化時要根據情況進行分類,題目有一定的綜合性,做題時易考慮不完善造成失分.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當a=5時,求f(x)的單調遞減函數(shù);
(Ⅱ)設直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點P(0,-3).
(1)求過點P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域為
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+
12
x
+lnx的導函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習冊答案