【題目】已知橢圓:在軸上的一個焦點,與短軸兩個端點的連線互相垂直,且右焦點坐標為.
(1)求橢圓的方程;
(2)設(shè)直線與圓相切,和橢圓交于,兩點,為原點,線段,分別和圓交于,兩點,設(shè),的面積分別為,,求的取值范圍.
【答案】(1);(2)
【解析】
(1)設(shè)橢圓的標準方程為,利用待定系數(shù)法求解;
(2)分直線斜率不存在與存在兩種情況討論,當直線斜率不存在時,易得,當直線斜率存在,設(shè)設(shè),,由直線與圓相切得到,將直線與橢圓聯(lián)立得到韋達定理,將表示成k的函數(shù),求出值域即可.
(1)設(shè)橢圓的標準方程為.
如圖所示,為等腰直角三角形,為斜邊的中線(高),
且,,,.
故所求橢圓的標準方程為
(2)①當直線斜率不存在時,其方程為,由對稱性,不妨設(shè)為,
此時,,,,故
②若直線斜率存在,設(shè)其方程為,由已知得
設(shè),,將直線與橢圓聯(lián)立得
由韋達定理,
結(jié)合及,可知:
將韋達定理代入整理得
結(jié)合知,設(shè),
則
綜上的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】為測試特斯拉汽車的百米加速時間,研發(fā)人員記錄了汽車在取、、、、、、時刻的位移,并對數(shù)據(jù)做了初步處理,得到圖.同時,令,得到數(shù)據(jù)圖,現(xiàn)畫出與,與的散點圖.
累加 | 累加 |
(1)根據(jù)散點圖判斷,與,與哪兩個量之間線性相關(guān)程度更強?(直接給出判斷即可);
(2)根據(jù)(1)的結(jié)果選擇線性相關(guān)程度更強的兩個量,建立相應(yīng)的回歸直線方程;
(3)根據(jù)(2)的結(jié)果預(yù)計特斯拉汽車百米加速需要的時間.
附:對于一組數(shù)據(jù)、、、,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有12支球隊進行足球比賽,每兩隊都賽一場,勝者得3分,負者得0分,平局各得1分那么,有1支球隊最少要得多少分才能保證最多有6支球隊的得分不少于該隊的得分?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,圓、橢圓與軸正半軸的交點分別為,.
(1)求橢圓的標準方程;
(2)設(shè)點(且)為橢圓上一點,點關(guān)于軸的對稱點為,直線,分別交軸于點,,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標有等級代碼.為得到小龍蝦等級代碼數(shù)值與銷售單價之間的關(guān)系,經(jīng)統(tǒng)計得到如下數(shù)據(jù):
等級代碼數(shù)值 | 38 | 48 | 58 | 68 | 78 | 88 |
銷售單價(元 | 16.8 | 18.8 | 20.8 | 22.8 | 24 | 25.8 |
(1)已知銷售單價與等級代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);
(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數(shù)值為98,請估計該等級的中國小龍蝦銷售單價為多少元?
參考公式:對一組數(shù)據(jù),,····,其回歸直線的斜率和截距最小二乘估計分別為:,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).f(t),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學家祖沖之的兒子祖暅首先提出來的.祖暅原理的內(nèi)容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個平面的平面去截三個幾何體,如果得到的三個截面面積總相等,那么,下面關(guān)系式正確的是( )
A.,,B.,,
C.,,D.,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過F作兩條互相垂直的弦AB、CD,設(shè)AB、CD的中點分別為M、N。
(1)求證:直線MN必過定點;
(2)分別以AB和CD為直徑作圓,求兩圓相交弦中點H的軌跡方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com