【題目】已知,如圖,在直二面角中,四邊形是邊長為的正方形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段(不包含端點)上是否存在點,使得與平面所成的角為;若存在,寫出的值,若不存在,說明理由.
【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ).
【解析】試題分析:
(Ⅰ)由面面垂直的性質(zhì)定理可得,結(jié)合,可得平面.
(Ⅱ)以為原點,以的方向分別為軸,軸的正方向,建立空間直角坐標(biāo)系,計算可得平面的法向量,設(shè)平面的法向量,計算可得二面角的余弦值為.
(Ⅲ)設(shè)存在點滿足題意,設(shè),則,據(jù)此得到關(guān)于的方程,解方程可得.則在線段上存在點滿足題意.
試題解析:
(Ⅰ)證明:因為在直二面角中,四邊形是正方形,
所以,則平面,
又因為平面,所以,
因為,即,
所以平面.
(Ⅱ)以為原點,以的方向分別為軸,軸的正方向,建立空間直角坐標(biāo)系
則,,,.
平面的法向量,設(shè)平面的法向量,
因為,,
所以即
令,解得,則,
所以二面角的余弦值為.
(Ⅲ)設(shè)存在點,使得與平面所成的角為,且,
則,,則有,
解得(舍).
所以在線段上存在點,使得與平面所成的角為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F、P、Q分別是BC、C1D1、AD1、BD的中點.
(1)求證:PQ∥平面DCC1D1;
(2)求證:AC⊥EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的序號是_________.
① 的圖象與的圖象關(guān)于軸對稱;
② 若,則的值為1;
③ 若, 則 ;
④ 把函數(shù)的圖象向左平移個單位長度后,所得圖象的一條對稱軸方程為;
⑤ 在鈍角中,,則;
⑥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若方程在上有根,求實數(shù)的取值范圍;
(2)設(shè),若對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx+cos2x-.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象.若關(guān)于x的方程g(x)-k=0,在區(qū)間[0,]上有實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校對高二600名學(xué)生進行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
分 組 | 頻 數(shù) | 頻 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 計 |
| 1.00 |
(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
(2)請你估算該年級學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分數(shù)在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分數(shù)都在[80,90)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com