【題目】已知函數(shù)f(x)=2 x﹣1(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x0)= , ,求cos2x0的值.
【答案】
(1)解:由f(x)=2 x﹣1得:f(x)= (2sinxcosx)+(2cos2x﹣1)= sin2x+cos2x=2sin(2x+ ).
由2kπ ≤2x+ ≤2kπ+ 得k ≤x≤k ,(k∈Z).
所以函數(shù)f(x)的單調(diào)遞減區(qū)間是[k ,k ],(k∈Z)
(2)解:由(1)知, ,
又由已知 ,則 .
因?yàn)? ,則2x0+ ∈[ , ],因此 ,
所以cos(2x0+ )=﹣ ,
于是cos2x0=cos[(2x0+ )﹣ ]=cos(2x0+ )cos +sin(2x0+ )sin =(﹣ )× + =
【解析】(1)由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)可得解析式f(x)=2sin(2x+ ),由2kπ ≤2x+ ≤2kπ+ ,即可解得f(x)的單調(diào)遞減區(qū)間.(2)由(1)及 ,則可求 ,由 ,可求2x0+ ∈[ , ],解得cos(2x0+ )=﹣ ,利用兩角差的余弦函數(shù)公式即可計(jì)算得解.2分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點(diǎn)為 及,過(guò)點(diǎn)的直線交橢圓于, 兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于, 兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點(diǎn))的面積為.試問(wèn):是否存在直線,使得?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)任意,都有,則稱函數(shù)是“以為界的類斜率函數(shù)”.
(1)試判斷函數(shù)是否為“以為界的類斜率函數(shù)”;
(2)若實(shí)數(shù),且函數(shù)是“以為界的類斜率函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=﹣(x﹣1)2+1,則滿足f[f(a)+ ]= 的實(shí)數(shù)a的個(gè)數(shù)為( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|0< ≤1},B={y|y=( )x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設(shè)集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形和菱形所在平面互相垂直,如圖,其中, , ,點(diǎn)為線段的中點(diǎn).
(Ⅰ)試問(wèn)在線段上是否存在點(diǎn),使得直線平面?若存在,請(qǐng)證明平面,并求出的值,若不存在,請(qǐng)說(shuō)明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:關(guān)于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(x2﹣x+a)的定義域?yàn)镽,若p∨q為真p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD為等邊三角形,PA=BD= ,AB=AD,E為PC的中點(diǎn).
(1)求證:BC⊥AB;
(2)求AB的長(zhǎng);
(3)求平面BDE與平面ABP所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求三棱錐B﹣EFC的體積;
(3)求二面角P﹣EC﹣D的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com