【題目】已知數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,且前項(xiàng)和為.

(1)用表示;

(2)是否存在自然數(shù),使得成立?

【答案】(1)Sn+1Sn+2; (2)見(jiàn)解析.

【解析】

(1)根據(jù)題意,得Sn=4,所以Sn+1=4Sn+2(n∈N).(2)利用分析法解答,要使不等式>2成立,只需不等式Sk-2<c<Sk(k∈N) ①成立,要使①成立,c只能取2或3.再討論c=2或3時(shí),是否成立即得解.

(1)根據(jù)題意,得Sn=4.

所以Sn+1=4Sn+2(n∈N).

(2)要使不等式>2成立,

只需不等式<0成立.

因?yàn)镾k=4<4,

所以Sk=2-Sk>0(k∈N).

故只需不等式Sk-2<c<Sk(k∈N) ①成立.

因?yàn)镾k+1>Sk(k∈N),

所以Sk-2≥S1-2=1.

又Sk<4,故要使①成立,c只能取2或3.

當(dāng)c=2時(shí),因?yàn)镾1=2,

所以當(dāng)k=1時(shí),c<Sk不成立.從而①不成立.

當(dāng)k≥2時(shí),因?yàn)?/span>S2-2=>c,由Sk<Sk+1

(k∈N),得Sk-2<Sk+1-2.

故當(dāng)k≥2時(shí), Sk-2>c.從而①不成立.

當(dāng)c=3時(shí),因?yàn)镾1=2,S2=3,

所以當(dāng)k=1, k=2時(shí),c<Sk不成立.從而①不成立.

因?yàn)?/span>S3-2=>c, Sk-2<Sk+1-2,

所以當(dāng)k≥3時(shí), Sk-2>c.從而①不成立.

綜上,不存在自然數(shù)c和k,使不等式>2成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))處的切線方程;
(2)若x>0時(shí),不等式f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點(diǎn),且PE= PC.

(Ⅰ)求PE的長(zhǎng);
(Ⅱ)求證:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自貢某個(gè)工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過(guò)±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤(rùn)20元,生產(chǎn)一件合格品可獲利潤(rùn)10元,生產(chǎn)一件次品要虧損10元.

(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤(rùn)的分布列和期望;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)定義在區(qū)間(0,+∞)上,且f(1)=0,導(dǎo)函數(shù)f′(x)=,函數(shù)g(x)=f(x)+f′(x).

(1)求函數(shù)g(x)的最小值;

(2)是否存在x0>0,使得不等式|g(x)-g(x0)|<對(duì)任意x>0恒成立?若存在,請(qǐng)求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)邊分別是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求證:A=B;
(2)若A= ,a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱(chēng)為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).

(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案