已知當(dāng)x∈(-
π
6
,π)時(shí),不等式cos2x-2asinx+6a-1>0恒成立,求實(shí)數(shù)a的取值范圍( 。
A、[-
1
2
,1]
B、[-1,0]
C、[-
3
2
,0]
D、(
1
2
,+∞)
分析:先利用二倍角公式把題設(shè)不等式轉(zhuǎn)化為關(guān)于sinx的一元二次不等式,求得sinx的范圍,利用x的范圍可求得sinx的范圍,進(jìn)而根據(jù)不等式恒成立推斷出(-a-
1
2
a2+12a
)<2<-
1
2
<1<(a+
1
2
a2+12a
),進(jìn)而求得a的范圍.
解答:解:cos2x-2asinx+6a-1>0
∴1-2sin2x-2asinx+6a-1>0
∴sinx2+asinx-3a<0
∴sinx∈(-a-
1
2
a2+12a
),(a+
1
2
a2+12a

∵x∈(-
π
6
,π)∴sinx∈(-
1
2
,1)
∴(-a-
1
2
a2+12a
)<2<-
1
2
<1<(a+
1
2
a2+12a

∴a>
1
2

故選D.
點(diǎn)評:本題主要考查了三角函數(shù)的最值.考查了三角函數(shù)與不等式的綜合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,若B=60°,a=(
3
-1)c.
(1)求角A的大。
(2)已知當(dāng)x∈[
π
6
,
π
2
]時(shí),函數(shù)f(x)=cos2x+asinx的最大值為3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)F(x)=
3
f(x)
的解析式;
(Ⅲ)記(Ⅱ)中的函數(shù)F(x)=
3
f(x)
的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出l的方程;若不存在,請說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對稱圖形?若是,請求出對稱中心的坐標(biāo)并加以證明;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案