已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出l的方程;若不存在,請說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對稱圖形?若是,請求出對稱中心的坐標(biāo)并加以證明;若不是,請說明理由.
分析:(1)由于a≠0且a≠1,f(x)=
3
x
a
+
3
(a-1)
x
=
3
a
(x+
a(a-1)
x
),由雙鉤函數(shù)y=x+
m
x
(m>0)在(-∞,-
m
],[
m
,+∞)上單調(diào)遞增,在[-
m
,0),(0,
m
]單調(diào)遞減,可判斷f(x)在當(dāng)a<0或當(dāng)a>1時(shí)的單調(diào)區(qū)間;當(dāng)0<a<1時(shí),可由y=
3
a
x
為R上的增函數(shù),y=
3
(a-1)
x
為(-∞,0),(0,+∞)上的增函數(shù),判斷即可;
(2)由題意及(1)中③可知
a(a-1)
=
6
且a>1,可解得a=3,從而可求得函數(shù)解析; 
(3)(理) 假設(shè)存在經(jīng)過原點(diǎn)的直線l為曲線C的對稱軸,顯然x、y軸不是曲線C的對稱軸,可設(shè)l:y=kx(k≠0),設(shè)P(p,q)為曲線C上的任意一點(diǎn),P'(p',q')與P(p,q)關(guān)于直線l對稱,且p≠p',q≠q',則P'也在曲線C上,列式計(jì)算即可;
(文)先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若定義域關(guān)于原點(diǎn)對稱,再證明f(-x)=-f(x)即可.
解答:解:∵f(x)=
3
x
a
+
3
(a-1)
x
=
3
a
(x+
a(a-1)
x
),
∴由雙鉤函數(shù)y=x+
m
x
(m>0)在(-∞,-
m
],[
m
,+∞)上單調(diào)遞增,在[-
m
,0),(0,
m
]單調(diào)遞減,可得:
①當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(-
a(a-1)
,0)
(0,
a(a-1)
)
,
②當(dāng)a>1時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
a(a-1)
)
(
a(a-1)
,+∞)

又當(dāng)0<a<1時(shí),y=
3
a
x
為R上的增函數(shù),y=
3
(a-1)
x
為(-∞,0),(0,+∞)上的增函數(shù),
∴③當(dāng)0<a<1時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0)及(0,+∞);(6分)
(2)由題設(shè)及(1)中③知
a(a-1)
=
6
且a>1,解得a=3,(9分)
因此函數(shù)解析式為f(x)=
3
x
3
+
2
3
x
(x≠0).                     (10分)
(3)(理)假設(shè)存在經(jīng)過原點(diǎn)的直線l為曲線C的對稱軸,顯然x、y軸不是曲線C的對稱軸,故可設(shè)l:y=kx(k≠0),且p≠p',q≠q',則P'也在曲線C上,列式計(jì)算即可;
設(shè)P(p,q)為曲線C上的任意一點(diǎn),P'(p',q')與P(p,q)關(guān)于直線l對稱,且p≠p',q≠q',則P'也在曲線C上,由此得
q+q′
2
=k
p+p′
2
q-q′
p-p′
=-
1
k
,
q=
p
3
+
2
3
p
,q′=
p′
3
+
2
3
p′
,(14分)
整理得k-
1
k
=
2
3
,解得k=
3
k=-
3
3
,
所以存在直線y=
3
x
y=-
3
3
x
為曲線C的對稱軸.           (16分)
(文)該函數(shù)的定義域D=(-∞,0)∪(0,+∞),曲線C的對稱中心為(0,0),
因?yàn)閷θ我鈞∈D,f(-x)=-
3
x
a
+
3
(a-1)
-x
=-[
3
x
a
+
3
(a-1)
x
]=-f(x)

所以該函數(shù)為奇函數(shù),曲線C為中心對稱圖形.                    (10分)
點(diǎn)評:本題考查函數(shù)奇偶性、單調(diào)性與對稱性,函數(shù)解析式的求解,(1)由實(shí)數(shù)a的不同取值,研究函數(shù)的單調(diào)區(qū)間是難點(diǎn),可以利用導(dǎo)數(shù)研究,著重考查綜合分析、綜合應(yīng)用的能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于( 。

查看答案和解析>>

同步練習(xí)冊答案