若函數(shù) (A>0)在處取最大值,則 (  )
A.一定是奇函數(shù)B.一定是偶函數(shù)
C.一定是奇函數(shù)D.一定是偶函數(shù)
D

試題分析:根據(jù)題意可知 ,函數(shù) (A>0)在處取最大值,說(shuō)明了當(dāng),則,則可知
,那么逐一的進(jìn)行判定可知選項(xiàng)A,由于,不是奇函數(shù),選項(xiàng)C不具有奇偶性,選項(xiàng)B是奇函數(shù),故選D.
點(diǎn)評(píng):解決的關(guān)鍵是通過(guò)性質(zhì)確定解析式,進(jìn)而分析其性質(zhì),屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.
現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:
貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表
運(yùn)輸工具
運(yùn)輸費(fèi)單價(jià):元/(噸•千米)
冷藏費(fèi)單價(jià):元/(噸•時(shí))
固定費(fèi)用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時(shí),火車的速度為       千米/時(shí):
(2)設(shè)每天用汽車和火車運(yùn)輸?shù)目傎M(fèi)用分別為(元)和(元),分別求、的函數(shù)關(guān)系式(不必寫(xiě)出的取值范圍),及為何值時(shí)(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)
(3)請(qǐng)你從平均數(shù)、折線圖走勢(shì)兩個(gè)角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)(xR)為奇函數(shù), f(2)="1," f(x+2)=f(x)+f(2),則f(3)等于(   )
A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)上為增函數(shù),則實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列結(jié)論中正確的是
A.導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)
B.如果在附近的左側(cè),右側(cè),那么是極大值
C.如果在附近的左側(cè),右側(cè),那么是極小值
D.如果在附近的左側(cè),右側(cè),那么是極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對(duì)于任意,上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對(duì)任意 恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)
已知函數(shù),
(1)若對(duì)于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個(gè)極值點(diǎn),,求證:;
(3)設(shè)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)某工廠有214名工人, 現(xiàn)要生產(chǎn)1500件產(chǎn)品, 每件產(chǎn)品由3個(gè)A型零件與1個(gè)B型零件配套組成, 每個(gè)工人加工5個(gè)A型零件與3個(gè)B型零件所需時(shí)間相同. 現(xiàn)將全部工人分為兩組, 分別加工一種零件, 同時(shí)開(kāi)始加工. 設(shè)加工A型零件的工人有x人, 在單位時(shí)間內(nèi)每人加工A型零件5k個(gè)(k∈N*), 加工完A型零件所需時(shí)間為g(x), 加工完B型零件所需時(shí)間為h (x).
 (Ⅰ) 試比較大小, 并寫(xiě)出完成總?cè)蝿?wù)的時(shí)間的表達(dá)式;
(Ⅱ) 怎樣分組才能使完成任務(wù)所需時(shí)間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱,則函數(shù)的單調(diào)遞增區(qū)間是            

查看答案和解析>>

同步練習(xí)冊(cè)答案