【題目】下列命題中錯誤的是( )

A. 平面內一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;

B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;

C. 平行于同一個平面的兩個平面平行;

D. 若兩個平面平行,則其中一個平面內的直線平行于另一個平面;

【答案】B

【解析】

根據(jù)空間中面面平行的性質、判定定理可以得到正確,可找到反例,從而得到結果.

選項:三角形各邊所在直線與一個平面平行,即三角形所在平面中有兩條相交直線均平行于另一個平面,可知兩個平面平行,正確;

選項:在如下圖所示的正方體中

平面平面,平面,平面

此時,異面,可知錯誤;

選項:由面與面的位置關系可知,平行于同一平面的兩個平面平行,正確;

選項:由面面平行的性質定理可知正確.

本題正確選項:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的兩個焦點分別為F1(﹣1,0)、F2(1,0),短軸的兩個端點分別為B1 , B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設z1 , z2是復數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,BC所對的邊分別為ab,c,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一場娛樂晚會上,有5位民間歌手(1至5號)登臺演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中隨機選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)X表示3號歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,是函數(shù)的圖象上任意不同兩點,依據(jù)圖象可知,線段總是位于,兩點之間函數(shù)圖象的上方,因此有結論成立.運用類比思想方法可知,若點是函數(shù)的圖象上任意不同兩點,則類似地有__________成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.16
B.﹣16
C.﹣16a2﹣2a﹣16
D.16a2+2a﹣16

查看答案和解析>>

同步練習冊答案