已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設(shè)該公司年內(nèi)共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
(1);(2)9.
解析試題分析:(1)年利潤=銷售總收入-總成本,所以,由于是分段函數(shù),所以也是分段函數(shù);(2)這是一個求分段函數(shù)最大值的問題,通常要先求出各段中的最大值,然后再比較這兩個值,其中較大的一個即為所求,在各段求最大值時,要根據(jù)函數(shù)特點,適當(dāng)選擇方法,如利用基本不不等式,配方,導(dǎo)數(shù)等.
試題解析:(1)由題意得,
即.
(2)①當(dāng)時,
則
∵ ,∴當(dāng)時,,則遞增;當(dāng)時,,則遞減;
∴當(dāng)時,取最大值萬元.
②當(dāng)時,.
當(dāng)且僅當(dāng),即取最大值38.
綜上,當(dāng)年產(chǎn)量為9千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大.
考點:函數(shù)在實際問題中的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
“城中觀!笔墙陙韲鴥(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個重要原因。暴雨會沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時,會造成堵塞,此時排水量為0;當(dāng)垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,時,排水量V是垃圾雜物密度x的一次函數(shù)。
(Ⅰ)當(dāng)時,求函數(shù)V(x)的表達(dá)式;
(Ⅱ)當(dāng)垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)可以達(dá)到最大,求出這個最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為實數(shù),函數(shù)。
(1)若,求的取值范圍;
(2)求的最小值;
(3)設(shè)函數(shù),直接寫出(不需給出演算步驟)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的值域為集合,的定義域為集合,其中。(1)當(dāng),求;(2)設(shè)全集為R,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像與函數(shù)h(x)=x++2的圖像關(guān)于點A(0,1)對稱.
(1) 求的解析式;
(2) 若,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com