A. | $\frac{25\sqrt{3}}{6}$ | B. | $\frac{50}{3}$ | C. | $\frac{25}{3}$ | D. | $\frac{125\sqrt{3}}{6}$ |
分析 用x表示出棱錐的高,得出f(x)的解析式,利用基本不等式得出f(x)的最大值.
解答 解:由圖可知EF=5,OF=$\frac{x}{2}$,∴四棱錐的高OE=$\sqrt{25-\frac{{x}^{2}}{4}}$,
∴VE-ABCD=$\frac{1}{3}$S△ABC•OE=$\frac{1}{3}{x}^{2}\sqrt{25-\frac{{x}^{2}}{4}}$.
∴f(x)=$\frac{1}{3}x\sqrt{25-\frac{{x}^{2}}{4}}$=$\frac{1}{3}$$\sqrt{{x}^{2}(25-\frac{{x}^{2}}{4})}$=$\frac{2}{3}$$\sqrt{\frac{{x}^{2}}{4}(25-\frac{{x}^{2}}{4})}$,
∵$\sqrt{\frac{{x}^{2}}{4}(25-\frac{{x}^{2}}{4})}$≤$\frac{\frac{{x}^{2}}{4}+25-\frac{{x}^{2}}{4}}{2}$=$\frac{25}{2}$,當且僅當$\frac{{x}^{2}}{4}$=25-$\frac{{x}^{2}}{4}$即x=5$\sqrt{2}$時取等號.
∴fmax(x)=$\frac{2}{3}×\frac{25}{2}$=$\frac{25}{3}$.
故選C.
點評 本題考查了棱錐的體積計算,基本不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$單位 | B. | 向右平移$\frac{π}{3}$單位 | C. | 向左平移$\frac{π}{6}$單位 | D. | 向右平移$\frac{π}{6}$單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2x2 | B. | y=8x2 | C. | $y=4{x^2}+\frac{1}{2}$ | D. | $y=4{x^2}-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (一∞,0] | B. | [1,+∞) | C. | (一∞,1) | D. | (0,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com