4.某地區(qū)對(duì)高一年級(jí)學(xué)生的瞬時(shí)記憶能力進(jìn)行調(diào)查,瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.現(xiàn)隨機(jī)抽取某學(xué)校高一學(xué)生共40人,下表為該批學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
視覺
聽覺
視覺記憶能力
偏低中等偏高超常
聽覺
記憶
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為$\frac{2}{5}$.
(1)試確定a、b的值;
(2)將抽取所得學(xué)生的頻率視為概率,從該地區(qū)高二年級(jí)學(xué)生中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ及方差Dξ.

分析 (1)由表格數(shù)據(jù)可知,視覺記憶能力恰為中等且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人,記“視覺記憶能力恰為中等且聽覺記憶能力為中等閾 中等以上”為事件A,由等可能事件概率計(jì)算公式能求出a=6,從而得到b=2.
(2)由于從40位學(xué)生中任取3位,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共有24人,故概率為$\frac{3}{5}$,從而ξ~B(3,$\frac{3}{5}$),由此能求出結(jié)果.

解答 解:(1)由表格數(shù)據(jù)可知,視覺記憶能力恰為中等且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人,
記“視覺記憶能力恰為中等且聽覺記憶能力為中等閾 中等以上”為事件A,
則P(A)=$\frac{10+a}{40}=\frac{2}{5}$,解得a=6,
∴b=40-(32+a)=40-38=2.
∴a=6,b=2.
(2)由于從40位學(xué)生中任取3位,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共有24人,
故概率為$\frac{3}{5}$,
∴從該地區(qū)高二年級(jí)學(xué)生中任意抽取3人,
其中恰有k位學(xué)生具有聽覺記憶能力或視覺記憶能力偏高或超常的概率P(ξ=k)=${C}_{3}^{k}(\frac{3}{5})^{k}(\frac{2}{5})^{3-k}$,(k=0,1,2,3),
ξ的可能取值為0,1,2,3,
P(ξ=0)=($\frac{2}{5}$)3=$\frac{8}{125}$,
P(ξ=1)=${C}_{3}^{1}(\frac{3}{5})(\frac{2}{5})^{2}=\frac{36}{125}$,
P(ξ=2)=${C}_{3}^{2}(\frac{3}{5})^{2}(\frac{2}{5})=\frac{54}{125}$,
P(ξ=3)=($\frac{3}{5}$)3=$\frac{27}{125}$,
∴ξ的分布列為:

 ξ 0 1 2 3
 P $\frac{8}{125}$ $\frac{36}{125}$ $\frac{54}{125}$ $\frac{27}{125}$
∵ξ~B(3,$\frac{3}{5}$),∴Eξ=3×$\frac{3}{5}$=$\frac{9}{5}$,Dξ=3×$\frac{3}{5}×\frac{2}{5}$=$\frac{18}{25}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.全集U=R,函數(shù)f(x)=$\frac{1}{\sqrt{sinx-\frac{1}{2}}}$+lg(2-x2)的定義域?yàn)榧螦,集合B={x|x2-a<0}.
(1)求∁UA;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R
(I)若m=1,求∁R(A∩B)
(II)若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象.為了得到這個(gè)函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍
C.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(2x+1)的定義域?yàn)閇-3,3],則函數(shù)f(x-1)的定義域?yàn)閇-4,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)(2,0)
(Ⅰ)求橢圓C的方程
(Ⅱ)若與坐標(biāo)軸不垂直的直線l經(jīng)過橢圓C的左焦點(diǎn)F(-c,0),且與橢圓C交于不同兩點(diǎn)A,B,問是否存在常數(shù)λ,(λ為實(shí)數(shù)),使|AB|=λ|AF||BF|恒成立,若存在,請(qǐng)求出λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在長(zhǎng)方體ABCD-A1B1C1D1中,E、F分別是棱BC,CC1上的點(diǎn),CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn),
(1)求異面直線A1M和C1D1所成的角的正切值;
(2)求二面角C1-B1C-D1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,等比數(shù)列{bn}的首項(xiàng)為b,公比為a(其中a,b均為正整數(shù)).
(1)若a1=b1,a2=b2,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)對(duì)于(1)中的數(shù)列{an}和{bn},對(duì)任意k∈N*在bk與bk+1之間插入ak個(gè)2,得到一個(gè)新的數(shù)列{cn},試求滿足等式$\sum_{i=1}^m{{c_i}=2{c_{m+1}}}$的所有正整數(shù)m的值;
(3)已知a1<b1<a2<b2<a3,若存在正整數(shù)m,n,t以及至少三個(gè)不同的b值使得am+t=bn成立,求t的最小值,并求t最小時(shí)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案