6.已知三棱錐 S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,則球O的體積為(  )
A.B.$\frac{32}{3}π$C.$\frac{16}{3}π$D.12π

分析 由三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,知BC=$\sqrt{3}$,∠ABC=90°.故△ABC截球O所得的圓O′的半徑r=$\frac{1}{2}$AC=1,由此能求出球O的半徑,從而能求出球O的體積.

解答 解:如圖,三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,
∵SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,
∴BC=$\sqrt{1+4-2×1×2×cos60°}$=$\sqrt{3}$,
∴∠ABC=90°.
∴△ABC截球O所得的圓O′的半徑r=$\frac{1}{2}$AC=1,
∴球O的半徑R=$\sqrt{1+(\frac{2\sqrt{3}}{2})^{2}}$=2,
∴球O的體積V=$\frac{4}{3}$πR3=$\frac{32}{3}$π.
故選:B.

點(diǎn)評(píng) 本題考查球的體積的求法,合理地作出圖形,數(shù)形結(jié)合求出球半徑,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知關(guān)于x的不等式x2-4ax+3a2<0(a>0)的解集為(x1,x2),則${x_1}+{x_2}+\frac{a}{{{x_1}{x_2}}}$的最小值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$-\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,在?ABCD中,M,N分別為AB,AD上的點(diǎn),且$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,連接AC,MN交于P點(diǎn),若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,則λ的值為( 。
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{6}{13}$D.$\frac{6}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù) f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定義域;
(2)判斷 f(x)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)計(jì)算:${({5\frac{1}{16}})^{0.5}}-2×{({2\frac{10}{27}})^{-\frac{2}{3}}}-2×{({\sqrt{2+π}})^0}÷{({\frac{3}{4}})^{-2}}$;
(2)計(jì)算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{{\sqrt{4-x}}}$的定義域是( 。
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且f(x)>-x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實(shí)根,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)動(dòng)點(diǎn)P在y軸與直線l:x=8之間的區(qū)域(含邊界)上運(yùn)動(dòng),且到點(diǎn)F(2,0)和直線l的距離之和為10,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)S(2,4)作兩條直線SA、SB分別交曲線C于A、B兩點(diǎn),斜率分別為k1、k2
(1)求曲線C的方程;
(2)若k1•k2=1,求證:直線AB恒過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案