【題目】如圖所示,正三棱柱的底面邊長是2,側(cè)棱長是,是的中點.
(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在一點,使得平面平面?若存在,求出的長;若不存在,說明理由.
【答案】(I)見解析;(II)存在點,使得平面平面,且
【解析】
(I)連接AB1交A1B于點M,連接MD.利用中位線定理得出B1C∥MD,故而B1C∥平面A1BD;
(II)作CO⊥AB于點O,以O為坐標原點建立空間坐標系,設AE=a,分別求出平面B1C1E和平面A1BD的法向量,令兩法向量垂直解出a.
(I)連接交于點,連接.
∵三棱柱是正三棱柱,∴四邊形是矩形,
∴為的中點.
∵是的中點,∴.
又平面,平面,
∴平面.
(II)作于點,則平面,
以為坐標原點建立空間直角坐標系如圖,假設存在點,設.
∵是的中點,∴.
∴.
設是平面的法向量為,∴,
∴,令,得.
∵,則.
設平面的法向量為,∴.
∴,令,得.
∵平面平面,∴,
即,解得.
∴存在點,使得平面平面,且.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(-2,1),=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率;
(2)若x,y在區(qū)間[1,6]內(nèi)取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績在50-70分的頻率是多少
(2)求這三個年級參賽學生的總?cè)藬?shù)是多少:
(3)求成績在80-100分的學生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
由散點圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與的關(guān)系為.根據(jù)(1)的結(jié)果,求當年宣傳費時,年利潤的預報值是多少?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標;
(Ⅱ)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當CD=時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(1)已知函數(shù)具有性質(zhì),求出對應的的值;
(2)證明:函數(shù)一定不具有性質(zhì);
(3)下列三個函數(shù):,,,哪些恒具有性質(zhì),并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com