【題目】函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( )

A.
B.
C.
D.

【答案】D
【解析】解:由當f′(x)<0時,函數(shù)f(x)單調(diào)遞減,當f′(x)>0時,函數(shù)f(x)單調(diào)遞增,
則由導函數(shù)y=f′(x)的圖象可知:f(x)先單調(diào)遞減,再單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增,排除A,C,
且第二個拐點(即函數(shù)的極大值點)在x軸上的右側,排除B,
故選D
根據(jù)導數(shù)與函數(shù)單調(diào)性的關系,當f′(x)<0時,函數(shù)f(x)單調(diào)遞減,當f′(x)>0時,函數(shù)f(x)單調(diào)遞增,根據(jù)函數(shù)圖象,即可判斷函數(shù)的單調(diào)性,然后根據(jù)函數(shù)極值的判斷,即可判斷函數(shù)極值的位置,即可求得函數(shù)y=f(x)的圖象可能

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面是菱形,底面,上的任意一點

求證:平面平面

,求點到平面的距離

的條件下,若,求與平面所成角的正切值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關于y軸對稱,若sinα= ,則cos(α﹣β)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京101中學校園內(nèi)有一個“少年湖”,湖的兩側有一個音樂教室和一個圖書館,如圖,若設音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學選定了與A,B不共線的C處,構成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,B,BC;③測量∠C,AC,BC;④測量∠A,C,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點,設

1)證明:PE⊥BC;

2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1)求的值;

(2)設的三個角、、所對的邊依次為、,如果,且,試求的取值范圍;

(3)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3﹣3x2﹣6x+a在區(qū)間(1,2)內(nèi)有一個零點x0 , g(x)為f(x)的導函數(shù).
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)設m∈[1,x0)∪(x0 , 2],函數(shù)h(x)=g(x)(m﹣x0)﹣f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且 ∈[1,x0)∪(x0 , 2],滿足| ﹣x0|≥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設海拔x m處的大氣壓強是 y Pa,yx 之間的函數(shù)關系式是 ycekx,其中c,k為常量,已知某地某天在海平面的大氣壓為1.01×105 Pa,1 000 m高空的大氣壓為0.90×105 Pa,求600 m高空的大氣壓強(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100=

查看答案和解析>>

同步練習冊答案