圓臺的母線長是3,側面展開后所得扇環(huán)的圓心角為180°,側面積為10π,則圓臺的高為
 
,上下底面的半徑為
 
考點:旋轉體(圓柱、圓錐、圓臺)
專題:空間位置關系與距離
分析:圓臺的母線長為3,根據(jù)
R-r
l
×360°=180°,及π(r+R)l=10π,求出圓臺的上下底面半徑,再利用h=
l2-(R-r)2
求得圓臺的高.
解答: 解:設圓臺的上下底面的半徑為r,R,高為h,
∵圓臺的母線長l=3,側面展開后所得扇環(huán)的圓心角為180°,側面積為10π,
R-r
3
×360°=180°…①
π(r+R)×3=10π…②,
解得:R=
29
12
,r=
11
12
,
圓臺的高h=
l2-(R-r)2
=
3
3
2
,
故答案為:
3
3
2
,
11
12
,
29
12
點評:本題考查了圓臺的幾何特征,熟練掌握圓臺的側面展開圖扇環(huán)的圓心角公式及側面積公式,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC的外接圓的圓心為O,半徑為2,且
OA
+
AB
+
AC
=
0
,則
CA
CB
等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為2,若前17項和為S17=34,則a12的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=6,
an+1
an
=
n+3
n
,那么{an}的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,0),曲線C:y=eax恒過點B,則點B的坐標為(0,1),若P是曲線C上的動點,且
AB
AP
的最小值為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M滿足條件:若a∈M,則
1+a
1-a
∈M(a≠0,a≠±1),已知3∈M,則集合M=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓具有性質:若A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0且a,b為常數(shù))上關于原點對稱的兩點,點P是橢圓上的任意一點,若直線PA和PB的斜率都存在,并分別記為kPA,kPB,那么kPA•kPB=-
b2
a2
.類比雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0且a,b為常數(shù))中,若A,B是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0且a,b為常數(shù))上關于原點對稱的兩點,點P是雙曲線上的任意一點,若直線PA和PB的斜率都存在,并分別記為kPA,kPB,那么
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在區(qū)間[0,+∞)上單調遞減:則滿足f(x2+2x+3)<f(6)的實數(shù)x的取值范圍為( 。
A、(-∞,-3)∪(1,+∞)
B、(-3,1)
C、(-∞,-3)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知tanA•tanB>1,則△ABC是( 。
A、直角三角形
B、鈍角三角形
C、銳角三角形
D、最小內角大于45°的三角形

查看答案和解析>>

同步練習冊答案