【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程.
(Ⅰ)當(dāng)時(shí),判斷直線與的關(guān)系;
(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).
【答案】(1)見解析;(2)(2,0)和(0,2).
【解析】試題分析:(I)將曲線方程化成直角坐標(biāo)方程,計(jì)算圓心到直線的距離與圓的半徑比較大小得出結(jié)論;
(II)由題意可知直線與圓相離,且圓心到直線l的距離為2,故到直線l的距離等于2的點(diǎn)在過圓心且與直線l平行的直線上,求出此直線的參數(shù)方程代入圓的方程求出該點(diǎn)對(duì)應(yīng)的參數(shù),得出該點(diǎn)的坐標(biāo).
試題解析:
(Ⅰ)圓C的普通方程為:(x-1)2+(y-1) 2=2,
直線l的直角坐標(biāo)方程為:x+y-3=0,
圓心(1,1)到直線l的距離為
所以直線l與C相交.
(Ⅱ) 直線l的普通方程為x+y﹣m=0.
∵C上有且只有一點(diǎn)到直線l的距離等于,
∴直線l與圓C相離,且圓心到直線的距離為.
∴圓C上到直線l的距離等于2的點(diǎn)在過圓心C(1,1)且與直線l平行的直線上.
∴過圓心C(1,1)且與直線l平行的直線的參數(shù)方程為: (t為參數(shù)).
將: (t為參數(shù))代入圓C的普通方程得t2=2,
∴t1=,t2=﹣.
當(dāng)t=時(shí), ,當(dāng)t=﹣時(shí), .
∴C上到直線l距離為2的點(diǎn)的坐標(biāo)為(0,2),(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,且函數(shù)g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣ ,1]上的最大值為2,若對(duì)任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣ ]
B.(﹣∞, ]
C.[ ,+∞)
D.[﹣ ,+∞]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐,側(cè)面是邊長為2的正三角形,且平面平面,底面是菱形,且, 為棱上的動(dòng)點(diǎn),且.
(1)求證: ;
(2)試確定的值,使得二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求點(diǎn)D到平面ABC1的距離d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,試判斷函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用到的數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn).
(1)求證:PA∥平面EDB;
(2)求銳二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)滿足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)時(shí),f(x)=log2 ,則y=f(x)在(1,2)內(nèi)是( )
A.單調(diào)增函數(shù),且f(x)<0
B.單調(diào)減函數(shù),且f(x)<0
C.單調(diào)增函數(shù),且f(x)>0
D.單調(diào)增函數(shù),且f(x)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)與的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綠色出行越來越受到社會(huì)的關(guān)注,越來越多的消費(fèi)者對(duì)新能源汽車感興趣但是消費(fèi)者比較關(guān)心的問題是汽車的續(xù)駛里程某研究小組從汽車市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車調(diào)查其續(xù)駛里程單次充電后能行駛的最大里程,被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組: ,繪制成如圖所示的頻率分布直方圖.
求直方圖中m的值;
求本次調(diào)查中續(xù)駛里程在的車輛數(shù);
若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車?yán)m(xù)駛里程在的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com