【題目】已知f(x)=|x﹣a|+|2x﹣a|,a<0. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若不等式f(x)< 的解集非空,求a的取值范圍.

【答案】解:(Ⅰ) , 函數(shù)的圖象為;
從圖中可知,函數(shù)f(x)的最小值為
(Ⅱ)由(Ⅰ)知函數(shù)f(x)的最小值為 ,要使不等式 的解集非空,
必須 ,即a>﹣1.
∴a的取值范圍是(﹣1,0).

【解析】(Ⅰ)根據(jù)題意,分段討論f(x)的解析式,可得 ,作出其圖象,分析可得其最小值;(Ⅱ)由(Ⅰ)的結(jié)論,分析可得要使不等式 的解集非空,必須 ,解可得a的取值范圍,即可得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點(diǎn),PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有(  )

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用系統(tǒng)抽樣法從200名職工中抽取容量為20的樣本,將200名職工從1至200編號,按編號順序平均分成20組(1~10號,11~20號,…,191…200號),若第15組中抽出的號碼為147,則第一組中按此抽簽方法確定的號碼是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).

)求橢圓的方程.

)設(shè)過點(diǎn)的動直線相交于,兩點(diǎn),當(dāng)的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動點(diǎn),過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P. (Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓一個焦點(diǎn)為,離心率

Ⅰ)求橢圓的方程式.

Ⅱ)定點(diǎn),為橢圓上的動點(diǎn),求的最大值;并求出取最大值時點(diǎn)的坐標(biāo)求.

Ⅲ)定直線為橢圓上的動點(diǎn),證明點(diǎn)的距離與到定直線的距離的比值為常數(shù),并求出此常數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axex , 其中常數(shù)a≠0,e為自然對數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi)某知名大學(xué)有男生14000人,女生10000人,該校體育學(xué)院想了解本校學(xué)生的運(yùn)動狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天運(yùn)動的時間,如下表:(平均每天運(yùn)動的時間單位:小時,該校學(xué)生平均每天運(yùn)動的時間范圍是).

男生平均每天運(yùn)動時間分布情況:

女生平均每天運(yùn)動時間分布情況:

(1)請根據(jù)樣本估算該校男生平均每天運(yùn)動的時間(結(jié)果精確到0.1);

(2)若規(guī)定平均每天運(yùn)動的時間不少于2小時的學(xué)生為“運(yùn)動達(dá)人”,低于2小時的學(xué)生為“非運(yùn)動達(dá)人”.

①請根據(jù)樣本估算該校“運(yùn)動達(dá)人”的數(shù)量;

②請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“是否為‘運(yùn)動達(dá)人’與性別有關(guān)?”

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當(dāng)時,,

因?yàn)?/span>單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以,

所以

【點(diǎn)睛】

本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.

型】解答
結(jié)束】
21

【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,

(1)求等比數(shù)列的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案