【題目】設數(shù)列的前項和為,已知.

(1)求數(shù)列的通項公式;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】

(1)由,可得, 兩式相減、化簡得,得出數(shù)列是以首項為,公比為 的等比數(shù)列,利用等比數(shù)列的通項公式,即可求解.

所以數(shù)列的通項公式

(2)由(1)可得,求得,把不等式恒成立,轉(zhuǎn)化為恒成立,令,求得數(shù)列的單調(diào)性和最大值,即可求解.

(1)由題意,令,解得,

,可得,

兩式相減得,化簡得,即

所以數(shù)列是以首項為,公比為的等比數(shù)列,

所以數(shù)列的通項公式

(2)由(1)可得,數(shù)列的前n項和為,

又由不等式恒成立,整理得恒成立,

,則

時,,所以,

時,,所以,

又因為, ∴的最大值是,即

所以實數(shù)的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汕尾市基礎教育處為調(diào)查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調(diào)查,現(xiàn)將日均自學時間小于1小時的學生稱為“自學不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學不足”的概率為

非自學不足

自學不足

合計

配有智能手機

30

沒有智能手機

10

合計

請完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“自學不足”與“配有智能手機”有關?

附表及公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線方程為y2=-4x,直線l的方程為2x+y-4=0,在拋物線上有一動點A,點A到y(tǒng)軸的距離為m,到直線l的距離為n,則m+n的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】啟東市政府擬在蝶湖建一個旅游觀光項目,設計方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個觀景長廊,其中A,B,C,D是觀景長廊的四個出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個觀景亭,且它們關于直線AC對稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長廊、觀景橋的寬度均忽略不計,設

1)若觀景長廊AD4百米,CD=AB,求由觀景長廊所圍成的四邊形ABCD內(nèi)的湖面面積;

2)當時,求三角形區(qū)域ADC內(nèi)的湖面面積的最大值;

3)若CD=8百米且規(guī)劃建亭點P在三角形ABC區(qū)域內(nèi)(不包括邊界),試判斷四邊形ABCP內(nèi)湖面面積是否有最大值?若有,求出最大值,并寫出此時的值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高一(1)班參加校生物競賽學生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽的人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分數(shù)在[80,100]之間的學生中任選2人進行某項研究,求至少有1人分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓C:的左、右焦點分別為,P為橢圓C上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設

(1)若點的坐標為,求橢圓的方程;

(2)若,求橢圓的離心率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019中秋節(jié)期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達監(jiān)控點先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度()分成七段后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:

1)求的值,并說明交警部門采用的是什么抽樣方法?

2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計值(精確到0.1);

3)若該路段的車速達到或超過即視為超速行駛,試根據(jù)樣本估計該路段車輛超速行駛的概率.

查看答案和解析>>

同步練習冊答案