【題目】隨著我國經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進(jìn)入千千萬萬的家庭.大部分的車主在購買汽車時,會在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計:

購買了轎車(輛)

購買了(輛)

歲以下車主

歲以下車主

(1)根據(jù)表,是否有的把握認(rèn)為年齡與購買的汽車車型有關(guān)?

(2)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)用分層抽樣的方法從歲以上車主中抽取人,再從這人中隨機(jī)抽取人贈送免費(fèi)保養(yǎng)券,求這人中至少有輛轎車的概率。

附:,

【答案】(1)見解析;(2);(3)

【解析】

1計算K2的值,利用獨(dú)立性檢驗(yàn)的性質(zhì)進(jìn)行判斷即可;

2根據(jù)平均數(shù)的公式進(jìn)行計算即可;

3利用分層抽樣的方法,利用列舉法結(jié)合古典概型的概率公式進(jìn)行計算即可.

(1)由題意得, ,

故有的把握認(rèn)為年齡與購買的汽車車型有關(guān).

(2)由題意得, ,

名車主的汽車上一年的平均行駛里程為.

(3)依題意得抽樣比是,故人中購買的是新車的有,記為,;購買的是的有人,記為,,從這人中隨機(jī)抽取人共有種情況,它們是:

,,,,,,

,,其中人中至少有輛轎車的共有種情況,故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個交點(diǎn),且軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,且,點(diǎn)中點(diǎn),現(xiàn)將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置.

(Ⅰ)求證:平面平面;

(Ⅱ)若與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上一動點(diǎn)Px,y)(x0)到定點(diǎn)F,0)的距離與它到直線lx的距離的比是

1)求動點(diǎn)P的軌跡E的方程;

2)若M是曲線E上的一個動點(diǎn),直線lyx+4,求點(diǎn)M到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,、分別是線段、的中點(diǎn),

1)證明:平面;

2)設(shè)點(diǎn)是線段的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的上、下焦點(diǎn)分別為,,右頂點(diǎn)為B,且滿足

求橢圓的離心率e;

設(shè)P為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過點(diǎn),問是否存在過的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為菱形, ,側(cè)面為等腰直角三角形,,點(diǎn)為棱的中點(diǎn).

(1)求證:面

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二階方矩陣,則矩陣所對應(yīng)的矩陣變換為:,其意義是把點(diǎn)變換為點(diǎn),矩陣叫做變換矩陣.

1)當(dāng)變換矩陣時,點(diǎn)、經(jīng)矩陣變換后得到點(diǎn)分別是、,求經(jīng)過點(diǎn)的直線的點(diǎn)方向式方程;

2)當(dāng)變換矩陣時,若直線上的任意點(diǎn)經(jīng)矩陣變換后得到的點(diǎn)仍在該直線上,求直線的方程;

3)若點(diǎn)經(jīng)過矩陣變換后得到點(diǎn),且關(guān)于直線對稱,求變換矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)某校夏令營有3名男同學(xué)A、B、C3名女同學(xué)X、Y、Z,其年級情況如下表:

一年級

二年級

三年級

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識競賽(每人被選到的可能性相同)

①用表中字母列舉出所有可能的結(jié)果;

②設(shè)M為事件選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué),求事件M發(fā)生的概率.

2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案