【題目】已知拋物線)與雙曲線,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個(gè)交點(diǎn),且軸,則該雙曲線經(jīng)過(guò)一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

【答案】B

【解析】

分析因?yàn)閽佄锞與雙曲線有相同的焦點(diǎn),所以可得pc之間的關(guān)系,

因?yàn)?/span>軸,則點(diǎn)A的坐標(biāo)可以由拋物線求出,將其代入雙曲線方程,

再由a、bc之間的關(guān)系,可求出離心率由離心率公式可得,即斜率的值,由斜率求出傾斜角的范圍.

詳解因?yàn)閽佄锞與雙曲線焦點(diǎn)相同,所以,因?yàn)?/span>x軸垂直,所以可求得點(diǎn)A的坐標(biāo)為,將其代入雙曲線方程可得:,

因?yàn)?/span>,代入上式可得

化簡(jiǎn)得,兩邊同時(shí)除以得:

解得(舍),設(shè)漸近線斜率為k,

,解得,所以?xún)A斜角應(yīng)大于

所以區(qū)間可能是,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C=2pxp>0)的準(zhǔn)線方程為x=-,F為拋物線的焦點(diǎn)

I)求拋物線C的方程;

II)若P是拋物線C上一點(diǎn),點(diǎn)A的坐標(biāo)為(,2,的最小值;

III)若過(guò)點(diǎn)F且斜率為1的直線與拋物線C交于MN兩點(diǎn),求線段MN的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}中的項(xiàng)按順序可以排成如圖的形式,第一行1項(xiàng),排a1;第二行2項(xiàng),從左到右分別排a2a3;第三行3項(xiàng),……依此類(lèi)推,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則滿(mǎn)足Sn2019的最小正整數(shù)n的值為()

A. 20B. 21C. 26D. 27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時(shí)的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(1)求抽取的20人中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù);

(2)從參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時(shí)間在同一時(shí)間段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在點(diǎn)處的切線方程為

(1)求的解析式;

(2)求的單調(diào)區(qū)間;

(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某闖關(guān)游戲規(guī)劃是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)輪,第輪的點(diǎn)數(shù)分別記為,如果點(diǎn)數(shù)滿(mǎn)足,則認(rèn)為第輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.

(1)求第1輪闖關(guān)成功的概率;

(2)如果第輪闖關(guān)成功所獲的獎(jiǎng)金(單位:元) ,求某人闖關(guān)獲得獎(jiǎng)金不超過(guò)2500元的概率;

(3)如果游戲只進(jìn)行到第4輪,第4輪后無(wú)論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省有關(guān)部門(mén)要求各中小學(xué)要把每天鍛煉一小時(shí)寫(xiě)入課程表,為了響應(yīng)這一號(hào)召,某校圍繞著你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫(xiě)一項(xiàng)的問(wèn)題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖(1)是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:

1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

2)本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?

3)若該校九年級(jí)共有200名學(xué)生,圖(2)是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)為多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案