【題目】函數(shù)的定義域為,對給定的正數(shù),若存在閉區(qū)間,使得函數(shù)滿足:①在內(nèi)是單調(diào)函數(shù);②在上的值域為,則稱區(qū)間為的級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是( )
A. 函數(shù)()存在1級“理想?yún)^(qū)間”
B. 函數(shù)()不存在2級“理想?yún)^(qū)間”
C. 函數(shù)()存在3級“理想?yún)^(qū)間”
D. 函數(shù), 不存在4級“理想?yún)^(qū)間”
【答案】D
【解析】A中,當x0時,f(x)=x2在[0,1]上是單調(diào)增函數(shù),且f(x)在[0,1]上的值域是[0,1],
∴存在1級“理想?yún)^(qū)間”,原命題正確;
B中,當x∈R時,f(x)=ex在[a,b]上是單調(diào)增函數(shù),且f(x)在[a,b]上的值域是[ea,eb],
∴不存在2級“理想?yún)^(qū)間”,原命題正確;
C中,因為在(0,1)上為增函數(shù)。
假設(shè)存在[a,b](0,1),使得f(x)∈[3a,3b]則有,所以命題正確;
D中,不妨設(shè)a>1,則函數(shù)在定義域內(nèi)為單調(diào)增函數(shù),
若存在“4級理想?yún)^(qū)間”[m,n],
則由m,n是方程tanx=4x,x∈的兩個根,
由于該方程不存在兩個不等的根,
故不存在“4級理想?yún)^(qū)間”[m,n],
∴D結(jié)論錯誤
本題選擇D選項.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點
且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點在軸上的射影恰好為點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若 , 試求f(x)在區(qū)間[﹣2,6]上的最值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點, 軸的正半軸與極軸建立極坐標系,已知曲線的極坐標方程為,過點且傾斜角為的直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);
(3)若從數(shù)學成績在與兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為.
(Ⅰ)證明直線AB恒過定點,并求定點的坐標;
(Ⅱ)求三角形ABM的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠擬造一座平面為長方形,面積為的三級污水處理池.由于地形限制,長、寬都不能超過,處理池的高度一定.如果池的四周墻壁的造價為元,中間兩道隔墻的造價為元,池底的造價為元,則水池的長、寬分別為多少米時,污水池的造價最低?最低造價為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com