【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.

【答案】
(1)解:曲線C的參數(shù)方程為 (α為參數(shù)),

x,y平方相加可得:x2+y2=2,①


(2)解:直線l方程為 ρsin( ﹣θ)+1=0化為普通方程為:x﹣y+1=0,②

由②得:y=x+1,③

把③帶入①得:2x2+2x﹣1=0,

∴|AB|= |x1﹣x2|

=

=

=


【解析】(1)把參數(shù)方程中的x,y平方相加即可得普通方程;(2)把直線l方程為 ρsin( ﹣θ)+1=0化為普通方程為:x﹣y+1=0,然后根據(jù)弦長公式計算即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過,且橢圓的離心率為.

(1)求橢圓的方程;

(2)設斜率存在的直線與橢圓交于兩點,為坐標原點,,且與圓心為的定圓相切.直線)與圓交于兩點,.面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)的圖象與x軸的相鄰兩個交點之間的距離為,且圖象上一個最高點為

(1)的解析式;

(2),求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 (a>b>0)的左、右焦點分別為F1 , F2 , 點D在橢圓上.DF1⊥F1F2 , =2 ,△DF1F2的面積為

(1)求橢圓的標準方程;
(2)設圓心在y軸上的圓與橢圓在x軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

附:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案