已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對(duì)稱(chēng)中心; 
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,且a>b>c,求
3
a-b的取值范圍.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,正弦定理
專(zhuān)題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積運(yùn)算、兩角和差的正弦公式、對(duì)稱(chēng)中心的性質(zhì)即可得出;
(2)利用三角函數(shù)的單調(diào)性、正弦定理、兩角和差的正弦公式即可得出.
解答: 解:(1)f(x)=
m
n
=(2cos2x,
3
)
•(1,sin2x)
=2cos2x+
3
sin2x
=cos2x+1+
3
sin2x

=2sin(2x+
π
6
)+
1.
2x+
π
6
=kπ
(k∈Z),解得x=
2
-
π
12
(k∈Z)

∴函數(shù)f(x)的對(duì)稱(chēng)中心為(
2
-
π
12
,1)
(k∈Z).
(2)∵f(C)=2sin(2C+
π
6
)+1=3
,
sin(2C+
π
6
)=1
,
∵C是銳角,∴2C+
π
6
=
π
2
,解得C=
π
6

a
sinA
=
b
sinB
=
c
sinC
=2,a=2sinA,b=2sinB,
3
a-b=a=2(
3
sinA-sinB)
=2[
3
sinA-sin(
6
-A)]=2sin(A-
π
6
)
,
A>B>C=
π
6

A∈(
12
,
3
)

(A-
π
6
)∈(
π
4
,
π
2
)

3
a-b∈(
2
,2)
點(diǎn)評(píng):本題考查了數(shù)量積運(yùn)算、兩角和差的正弦公式、對(duì)稱(chēng)中心的性質(zhì)、三角函數(shù)的單調(diào)性、正弦定理等基礎(chǔ)知識(shí)與基本技能方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)若a=
1
0
(x-1)dx,b=
1
0
(ex-1)dx,c=
1
0
(sinx-1)dx,則( 。
A、a<b<c
B、b<c<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=x+y,其中x,y滿(mǎn)足
x+2y≥0
x-y≥0
0≤x≤k
,當(dāng)z的最大值為6時(shí),k的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某園藝師培育了兩種珍稀樹(shù)苗A與B,株數(shù)分別為8與12,現(xiàn)將這20株樹(shù)苗的高度編寫(xiě)成如圖所示莖葉圖(單位:cm).若樹(shù)高在175cm以上(包括175cm)定義為“生長(zhǎng)良好”,樹(shù)高在175cm以下(不包括175cm)定義為“非生長(zhǎng)良好”,且只有“B生長(zhǎng)良好”的才可以出售.
(1)對(duì)于這20株樹(shù)苗,如果用分層抽樣的方法從“生長(zhǎng)良好”和“非生長(zhǎng)良好”中共抽取5株,再?gòu)倪@5株中任選2株,那么至少有一株“生長(zhǎng)良好”的概率是多少?
(2)若從所有“生長(zhǎng)良好”中選2株,求所選中的樹(shù)苗都能出售的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由于霧霾日趨嚴(yán)重,政府號(hào)召市民乘公交出行.但公交車(chē)的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿(mǎn)足乘客需求.為此,某市公交公司在某站臺(tái)的60名候車(chē)乘客中進(jìn)行隨機(jī)抽樣,共抽取15人進(jìn)行調(diào)查反饋,將他們的候車(chē)時(shí)間作為樣本分成5組,如下表所示(單位:min):
組別 候車(chē)時(shí)間 人數(shù)
[0,5) 2
[5,10) 5
[10,15) 4
[15,20) 3
[20,25] 1
(Ⅰ)估計(jì)這60名乘客中候車(chē)時(shí)間少于10分鐘的人數(shù);
(Ⅱ)若從上表第三、四組的7人中選2人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的兩人恰好來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
1-x
1+x
(a>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)P(-
4
5
,2).
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)g(x)=
1-x
1+x
,用函數(shù)單調(diào)性的定義證明:函數(shù)y=g(x)在區(qū)間(-1,1)上單調(diào)遞減;
(3)解不等式:f(t2-2t-2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年2月21日《中共中央關(guān)于全面深化改革若干重大問(wèn)題的決定》明確:堅(jiān)持計(jì)劃生育的基本國(guó)策,啟動(dòng)實(shí)施一方是獨(dú)生子女的夫婦可生育兩個(gè)孩子的政策.為了解某地區(qū)城鎮(zhèn)居民和農(nóng)村居民對(duì)“單獨(dú)兩孩”的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否贊成“單獨(dú)兩孩”的問(wèn)題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
態(tài)度
調(diào)查人群
贊成 反對(duì) 無(wú)所謂
農(nóng)村居民 2100人 120人 y人
城鎮(zhèn)居民 600人 x人 z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“反對(duì)”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(2)在持“反對(duì)”態(tài)度的人中,用分層抽樣的方法抽取6人,按每組3人分成兩組進(jìn)行深入交流,求第一組中農(nóng)村居民人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校舉行課外綜合知識(shí)比賽,隨機(jī)抽取400名同學(xué)的成績(jī),成績(jī)?nèi)吭?0分至100分之間,將成績(jī)按如下方式分成5組:第一組,成績(jī)大于等于50分且小于60分;第二組,成績(jī)大于等于60分且小于70分…第五組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.則400名同學(xué)中成績(jī)優(yōu)秀(大于等于80分)的學(xué)生有
 
名.

查看答案和解析>>

同步練習(xí)冊(cè)答案