【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:;

(2)設(shè)是線段上的動(dòng)點(diǎn),是否存在這樣的點(diǎn),使得二面角的余弦值為,如果存在,求出的長;如果不存在,請(qǐng)說明理由.

【答案】(1)見解析;(2)長為1.

【解析】試題分析:(1)連結(jié),則由余弦定理可知根據(jù)直棱柱的性質(zhì),先由面面垂直證明線面垂直,再得到線線垂直,根據(jù)線面垂直的判定定理可得到平面,進(jìn)而可得結(jié)果;(2)為原點(diǎn),以方向?yàn)?/span>軸,以方向?yàn)?/span>軸,以方向?yàn)?/span>軸,建立坐標(biāo)系分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面與平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式列方程,從而可得結(jié)果.

試題解析:(1)連結(jié),,則由余弦定理可知,

由直棱柱可知,

(2)以為原點(diǎn),以方向?yàn)?/span>軸,以方向?yàn)?/span>軸,以方向?yàn)?/span>,建立坐標(biāo)系.

),,

,,

,,

,又,則,故長為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且過點(diǎn).過點(diǎn)的直線交橢圓, 兩點(diǎn), 為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))

(1)若,當(dāng)時(shí),試比較2的大。

(2)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為菱形,上的點(diǎn),過的平面分別交于點(diǎn),且平面.

(1)證明:;

(2)當(dāng)的中點(diǎn),,與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某技術(shù)公司開發(fā)的某種產(chǎn)品中隨機(jī)抽取200件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值(記為),由測(cè)量結(jié)果得到如下頻率分布直方圖:

公司規(guī)定:當(dāng)時(shí),產(chǎn)品為正品;當(dāng)時(shí),產(chǎn)品為次品,公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記的分布列和數(shù)學(xué)期望;

由頻率分布直方圖可以認(rèn)為,服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

①利用該正態(tài)分布,求;

②某客戶從該公司購買了500件這種產(chǎn)品,記表示這500件產(chǎn)品中該項(xiàng)質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù),利用①的結(jié)果,求.

附:,

,則,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

A. 11π B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4,坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程;

(2)設(shè)Mx,y)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過中央電視臺(tái)《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計(jì)了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬人次)的變化情況,從一個(gè)側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個(gè)圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個(gè)判斷中,錯(cuò)誤的是( )

A. 旅游總?cè)藬?shù)逐年增加

B. 2017年旅游總?cè)藬?shù)超過2015、2016兩年的旅游總?cè)藬?shù)的和

C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)

D. 從2014年起旅游總?cè)藬?shù)增長加快

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為

)求的極坐標(biāo)方程與的直角坐標(biāo)方程.

)若上任意一點(diǎn),過點(diǎn)的直線于點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案