已知直線l的參數(shù)方程是
x=
2
2
t
y=
2
2
t+4
2
(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+
π
4
).
(Ⅰ)求圓心C的直角坐標(biāo);
(Ⅱ)由直線l上的點向圓C引切線,求切線長的最小值.
分析:(I)先利用三角函數(shù)的和角公式展開圓C的極坐標(biāo)方程的右式,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得圓C的直角坐標(biāo)方程,從而得到圓心C的直角坐標(biāo).
(II)欲求切線長的最小值,轉(zhuǎn)化為求直線l上的點到圓心的距離的最小值,故先在直角坐標(biāo)系中算出直線l上的點到圓心的距離的最小值,再利用直角三角形中邊的關(guān)系求出切線長的最小值即可.
解答:解:(I)∵ρ=
2
cosθ-
2
sinθ
,∴ρ2=
2
ρcosθ-
2
ρsinθ
,
∴圓C的直角坐標(biāo)方程為x2+y2-
2
x+
2
y=0
,
(x-
2
2
)2+(y+
2
2
)2=1
,∴圓心直角坐標(biāo)為(
2
2
,-
2
2
)
.(5分)
(II)∵直線l的普通方程為x-y+4
2
=0
,
圓心C到直線l距離是
|
2
2
+
2
2
+4
2
|
2
=5
,
∴直線l上的點向圓C引的切線長的最小值是
52-12
=2
6
(10分)
點評:本題考查點的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點為原點,極軸為x軸正方向建立直角坐標(biāo)系,點M(0,2),直線l與曲線C交于A,B兩點.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點,則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊答案