【題目】已知函數(shù)的圖象是自原點(diǎn)出發(fā)的一條折線,當(dāng)()時(shí),該圖象是斜率為的線段,其中常數(shù)且,數(shù)列由()定義.
(1)若,求,;
(2)求的表達(dá)式及的解析式(不必求的定義域);
(3)當(dāng)時(shí),求的定義域,并證明的圖象與的圖象沒有橫坐標(biāo)大于1的公共點(diǎn).
【答案】(1),; (2);時(shí),,(); (3)的定義域?yàn)?/span>,證明見解析.
【解析】
(1)由題意知,,當(dāng)時(shí),圖像是斜率為的線段,所以,即可求出,同理求出;(2) 當(dāng)時(shí),,得,利用累加法可求得,當(dāng)時(shí),即時(shí),化簡即可求得的解析式;(3) 當(dāng)時(shí),,的定義域?yàn)?/span>,證明,時(shí),恒有成立,運(yùn)用的解析式結(jié)合不等式的性質(zhì)即可得到結(jié)論.
(1)由,,當(dāng)時(shí),圖像是斜率為的線段,
∴,
∴,又及,
∴,
∴即.
(2)由(1)知,,;
因?yàn)楫?dāng)時(shí),,,
所以
∴
而此式對(duì)也成立,所以
又當(dāng)時(shí),,∴
即時(shí),,();
(3)當(dāng)時(shí),,的定義域?yàn)?/span>
下面證明,時(shí),恒有成立
事實(shí)上,對(duì)任總存在,使得,于是由可有,進(jìn)而
當(dāng)時(shí),,
即,∴,
綜上所述,的圖象與的圖象沒有橫坐標(biāo)大于1的公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出“大眾創(chuàng)業(yè),萬眾創(chuàng)新”.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬元做創(chuàng)業(yè)資金,每月獲得的利潤是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤)的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營.如此每月循環(huán)繼續(xù).
(1)問到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)
(2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosxcos2x+1
(1)求f(x)的最小正周期和最大值,并寫出取得最大值時(shí)x的集合;
(2)將f(x)的函數(shù)圖象向左平移φ(φ>0)個(gè)單位后得到的函數(shù)g(x)是偶函數(shù),求φ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)”對(duì)“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求收到“紅包”獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線過點(diǎn)且與橢圓相交于兩點(diǎn).過點(diǎn)作直線的垂線,垂足為.證明直線過軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn).若曲線上存在,兩點(diǎn),使為正三角形,則稱為型曲線.給定下列三條曲線:
①;
②;
③.
其中型曲線的個(gè)數(shù)是
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.(是自然對(duì)數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,和都是正三角形, , E、F分別是AC、BC的中點(diǎn),且PD⊥AB于D.
(Ⅰ)證明:直線⊥平面;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
…
…
…
……
(1)求第2行和第3行的通項(xiàng)公式和;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com