【題目】如圖,正方體的棱長為2,、分別為棱、上的點,且與頂點不重合.
(1)若直線與相交于點,求證:、、三點共線;
(2)若、分別為、的中點.
(。┣笞C:幾何體為棱臺;
(ⅱ)求棱臺的體積.
(附:棱臺的體積公式,其中、分別為棱臺上下底面積,為棱臺的高)
【答案】(1)證明見解析;(2)(ⅰ)證明見解析;(ⅱ)
【解析】
(1)由平面,平面,平面平面,根據(jù)點在兩個不重合的面內(nèi),則點在兩個面的公共線上即可證出.
(2)(。┻B,、分別為棱、的中點,證出四邊形為梯形,從而可得與相交,再由(1)可得直線、、交于一點,由平面平面,即可證出.
(ⅱ)求出,,以及棱臺的高,代入棱臺的體積公式即可求解.
證明:(1),
,,
平面,平面,
平面,平面,
即點為平面與平面的公共點.
又平面平面,
,即、、三點共線.
(2)(ⅰ)連,
、分別為棱、的中點,
為的中位線,
,,
,,
四邊形為平行四邊形.
,,
,,
四邊形為梯形,
與相交.
由(1)知:直線、、交于一點,
又平面平面,
幾何體為三棱臺.
(ⅱ)由題意:,,,
,
即棱臺的體積是.
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B,C分別為△ABC的三邊a,b,c所對的角,向量=(sin A,sin B),=(cos B,cos A),且=sin 2C.
(1)求角C的大。
(2)若sin A,sin C,sin B成等差數(shù)列,且,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,所有棱長均相等,且AA1⊥平面ABC,點D、E、F分別為所在棱的中點.
(1)求證:EF∥平面CDB1;
(2)求異面直線EF與BC所成角的余弦值;
(3)求二面角B1﹣CD﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且.
(1)求的值;
(2)若cosB,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,點在橢圓上.
求橢圓的方程;
已知與為平面內(nèi)的兩個定點,過點的直線與橢圓交于兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在等比數(shù)列中, ,且, , 成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,數(shù)列的前項和為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若為銳角,, ,求及的值;
(2)函數(shù),若對任意都有恒成立,求實數(shù)的最大值;
(3)已知,,求及的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com