函數(shù)f(x)=-x2+4x-4在區(qū)間[1,3]上( 。
分析:根據(jù)要求函數(shù)的零點(diǎn),使得函數(shù)等于0,解出自變量x的值,在四個(gè)選項(xiàng)中找出零點(diǎn)所在的區(qū)間,得到結(jié)果.
解答:解:要求f(x)=-x2+4x-4的零點(diǎn),
只要使得-x2+4x-4=0,
∴x=2,
∴函數(shù)f(x)=-x2+4x-4在區(qū)間[1,3]上只有一個(gè)零點(diǎn)2.
故選B.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)的判定定理,本題解題的關(guān)鍵是使得函數(shù)等于0,解出結(jié)果,因?yàn)樗o的函數(shù)比較簡(jiǎn)單,能夠直接做出結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過(guò)點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案