【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表l中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動(dòng)推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊(duì)對乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如表2
表2:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 |
已知該線路公交車票價(jià)為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計(jì)一名乘客一次乘車的平均費(fèi)用.
參考數(shù)據(jù):
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中,
【答案】(1)適宜作為掃碼支付的人數(shù)關(guān)于活動(dòng)推出天數(shù)的回歸方程類型;(2)關(guān)于x的回歸方程式為:,第8天使用掃碼支付的人次為347人次;
(3)元.
【解析】
(1)根據(jù)散點(diǎn)圖判斷適宜作為y關(guān)于x的回歸方程類型;
(2)對(1)中的回歸方程兩邊同時(shí)取常用對數(shù),求出線性回歸方程,再化為y關(guān)于x的回歸方程,把代入回歸方程求得對應(yīng)y的值;
(3)記乘車支付費(fèi)用為Z,知Z的可能取值,計(jì)算對應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望值.
解:(1)根據(jù)散點(diǎn)圖判斷,適宜作為掃碼支付的人數(shù)y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類型;
(2)由(1)知回歸方程為,
兩邊同時(shí)取常用對數(shù)得:,
設(shè),
,
又,,,
,
把樣本中心點(diǎn)代入,
即,
解得:,
,
,
關(guān)于x的回歸方程式為:,
把代入上式得,,
活動(dòng)推出第8天使用掃碼支付的人次為347人次;
(3)記一名乘客乘車支付的費(fèi)用為Z,則Z的取值可能為:2,1.8,1.6,1.4,
則,
,
,
;
分布列為:
Z | 2 | 1.8 | 1.6 | 1.4 |
P | 0.1 | 0.15 | 0.7 | 0.05 |
所以,一名乘客一次乘車的平均費(fèi)用為:(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}滿足:,且a1=1,則稱{an}為一個(gè)X數(shù)列.對于一個(gè)X數(shù)列{an},若數(shù)列{bn}滿足:b1=1,且,,則稱{bn}為{an}的伴隨數(shù)列.
(Ⅰ)若X數(shù)列{an}中a2=1,a3=0,a4=1,寫出其伴隨數(shù)列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}為一個(gè)X數(shù)列,{bn}為{an}的伴隨數(shù)列,證明:“{an}為常數(shù)列”是“{bn}為等比數(shù)列”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,群主所發(fā)紅包的總金額為10元,被隨機(jī)分配為2.49元、1.32元、2.19元、0.63元、3.37元共5份,供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費(fèi)政策”某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費(fèi)點(diǎn)記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機(jī)抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費(fèi)點(diǎn)的時(shí)刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,若直線上至少存在三個(gè)點(diǎn),使得是直角三角形,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,.若以為直徑的圓過點(diǎn),則拋物線的焦點(diǎn)到準(zhǔn)線距離為( )
A. 8B. 4或8C. 2D. 2或4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費(fèi)用約0.9萬元,回收1噸廢紙的費(fèi)用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費(fèi)用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD-A1B1C1D1中,AB=BC,E,F分別是AB1,BC1的中點(diǎn).有下列結(jié)論:
①EF⊥BB1;
②EF∥平面A1B1C1D1;
③EF與C1D所成角為45°;
④EF⊥平面BCC1B1.
其中不成立的是( 。
A.②③
B.①④
C.③④
D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com