5.執(zhí)行如圖所示的程序框圖后,輸出的值為4,則P的取值范圍是( 。
A.$\frac{7}{8}$<P≤$\frac{15}{16}$B.P>$\frac{15}{16}$C.$\frac{3}{4}$<P≤$\frac{7}{8}$D.$\frac{7}{8}$≤P<$\frac{15}{16}$

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,n的值,當(dāng)S=$\frac{7}{8}$時由題意此時不滿足條件$\frac{7}{8}$<P,退出循環(huán),輸出n的值為4,從而可解得p的取值范圍.

解答 解:模擬執(zhí)行程序框圖,可得
n=1,S=0
滿足條件S<P,S=$\frac{1}{2}$,n=2
滿足條件S<P,S=$\frac{1}{2}$+$\frac{1}{4}$=$\frac{3}{4}$,n=3
滿足條件S<P,S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$=$\frac{7}{8}$,n=4
由題意可得,此時,不滿足條件$\frac{7}{8}$<P,退出循環(huán),輸出n的值為4,
既有:$\frac{7}{8}$≥P>$\frac{3}{4}$.
故選:C.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,正確依次寫出每次循環(huán)得到的S,n的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直角△ABC的頂點A的坐標(biāo)為(-2,0),直角頂點B的坐標(biāo)為(1,$\sqrt{3}$),頂點C在x軸上.
(1)求邊BC所在直線的方程;
(2)求直線△ABC的斜邊中線所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},全集U=Z.當(dāng)x=-1時,(∁UA)∩B={-3,-1,7,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列曲線的微分.
(1)y=ln(1-x2);
(2)$\left\{\begin{array}{l}{x=a•cost}\\{y=b•sint}\end{array}\right.$;
(3)r=a•θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“函數(shù)f(x)=|a-3x|在[1,+∞)上為單調(diào)遞增函數(shù)”是“a=3”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-5≤0}\\{x≥1}\\{y≥0}\\{x+2y-3≥0}\end{array}\right.$,則$\frac{y}{x}$的值域為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},(x≥0)}\\{lo{g}_{3}(-x),(x<0)}\end{array}\right.$,函數(shù)g(x)=f2(x)+f(x)+t(t∈R),若函數(shù)g(x)有三個零點,則實數(shù)t的取值范圍為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=4x-a•2x+1(-1≤x≤2)的最小值為g(a).
(Ⅰ) 當(dāng)a=2 時,求g(a);
(Ⅱ) 求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,9)時,f(x)=x2-2x,則函數(shù)f(x)在[0,2016]上的零點個數(shù)是605.

查看答案和解析>>

同步練習(xí)冊答案