科目:高中數學 來源: 題型:解答題
在四棱錐P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中點.
求證:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在底面為直角梯形的四棱錐PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.
(1)求證:BD⊥PC;
(2)求直線AB與平面PDC所成的角;
(3)設點E在棱PC上,=λ,若DE∥平面PAB,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一點F,使平面C1CF∥平面ADD1A1?若存在,求點F的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F分別是CD、A1D1中點.
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點F,使BF⊥平面AEP,若存在,確定點P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點O,AC、BD交于點M,E為AB的中點,F為AA1的中點.求證:
(1)C1、O、M三點共線;
(2)E、C、D1、F四點共面.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,點A,B,E,A1在一個平面內,AB=BC=CC1=2,AC=2.
證明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)如圖所示,證明命題“a是平面π內的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫出上述命題的逆命題,并判斷其真假(不需證明).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com