在如圖所示的幾何體中,四邊形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,點A,B,E,A1在一個平面內,AB=BC=CC1=2,AC=2.
證明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知點M、N是正方體ABCD-A1B1C1D1的兩棱A1A與A1B1的中點,P是正方形ABCD的中心,
(1)求證:平面.
(2)求證:平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分別是BC,AA1的中點.
求(1)異面直線EF和A1B所成的角.
(2)三棱錐A-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中點.
(1)求證:AM=CM;
(2)若N是PC的中點,求證:DN∥平面AMC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥平面ABCD.
(1)求證:PC⊥BD;
(2)過直線BD且垂直于直線PC的平面交PC于點E,且三棱錐E-BCD的體積取到最大值.
①求此時四棱錐E-ABCD的高;
②求二面角A-DE-B的正弦值的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在四棱錐中,底面是正方形,與交于點底面,為的中點.
(1)求證:平面;
(2)若,在線段上是否存在點,使平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com