已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f'(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(I)求數(shù)列{an}的通項(xiàng)公式及Sn的最大值;
(II)令,其中n∈N*,求{nbn}的前n項(xiàng)和.
【答案】分析:(I)求出f(x)的導(dǎo)函數(shù)即可得到a與b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通項(xiàng)公式,令an=-2n+8≥0得到n的范圍即可求出Sn的最大值;
(II)由題知,數(shù)列{bn}是首項(xiàng)為8,公比是的等比數(shù)列,表示出{nbn}的各項(xiàng),利用錯(cuò)位相減法求出{nbn}的前n項(xiàng)和即可.
解答:解:(I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b
由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x
又因?yàn)辄c(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,所以有Sn=-n2+7n
當(dāng)n=1時(shí),a1=S1=6
當(dāng)n≥2時(shí),an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*
令an=-2n+8≥0得n≤4,∴當(dāng)n=3或n=4時(shí),Sn取得最大值12
綜上,an=-2n+8(n∈N*),當(dāng)n=3或n=4時(shí),Sn取得最大值12

(II)由題意得
所以,即數(shù)列{bn}是首項(xiàng)為8,公比是的等比數(shù)列,
故{nbn}的前n項(xiàng)和Tn=1×23+2×22++n×2-n+4

所以①-②得:

點(diǎn)評(píng):考查學(xué)生利用做差法求等差數(shù)列通項(xiàng)公式的能力,以及掌握用錯(cuò)項(xiàng)相減的方法求數(shù)列前n項(xiàng)的和.考查學(xué)生求導(dǎo)數(shù)的能力,以及靈活運(yùn)用等比數(shù)列的前n項(xiàng)和公式來解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案