【題目】已知函數(shù)上存在導(dǎo)函數(shù),若,且,則不等式的解集為( )

A. B. C. D.

【答案】C

【解析】

先構(gòu)造函數(shù)令g(x)=f(x)﹣x3,由題意判斷出F(x)的奇偶性和單調(diào)性,將不等式轉(zhuǎn)化成g(2x)>g(x﹣1),由函數(shù)單調(diào)性可得到|2x|>|x﹣1|,解得即可.

g(x)=f(x)﹣x3,∵f(x)﹣f(﹣x)=2x3,∴f(x)﹣x3=f(﹣x)﹣(﹣x)3

g(x)=g(﹣x),∴g(x)為偶函數(shù).∵x≥0f'(x)﹣3x2≥0,∴g(x)在[0,+∞)遞增,不等式f(2x)﹣f(x﹣1)>7x3+3x2﹣3x+1的解集g(2x)>g(x﹣1).

∴|2x|>|x﹣1|3x2+2x﹣1>0∴ x<﹣1.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·清遠期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:

溫度

20

25

30

35

產(chǎn)卵數(shù)/個

5

20

100

325

(1)根據(jù)散點圖判斷哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));

(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))

參考數(shù)據(jù):,,,,,,,,,,

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點為,當(dāng)變化時,的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)的交點,求的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有編號為1,234,5的五把鎖和對應(yīng)的五把鑰匙.現(xiàn)給這5把鑰匙也貼上編號為1,2,34,5的五個標(biāo)簽,則共有______種不同的貼標(biāo)簽的方法:若想使這5把鑰匙中至少有2把能打開貼有相同標(biāo)簽的鎖,則有______種不同的貼標(biāo)簽的方法.(本題兩個空均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),有三個不同的零點,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x3ax2x+1aR).

(1)當(dāng)a2時,求曲線yfx)在點(1,f 1))處的切線方程;

(2)當(dāng)a0時,設(shè)gx)=fx+x

①求函數(shù)gx)的極值;

②若函數(shù)gx)在[1,2]上的最小值是﹣9,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】戶外運動已經(jīng)成為一種時尚運動,某單位為了了解員工喜歡戶外運動是否與性別有關(guān),決定從本單位全體650人中采用分層抽樣的辦法抽取50人進行問卷調(diào)查,得到了如下列聯(lián)表:

喜歡戶外運動

不喜歡戶外運動

總計

男性

5

女性

10

總計

50

已知在這50人中隨機抽取1人,抽到喜歡戶外運動的員工的概率是.

1)請將上面的列聯(lián)表補充完整;

2)求該公司男、女員工各多少人;

3)在犯錯誤的概率不超過0.005的前提下能否認為喜歡戶外運動與性別有關(guān)?并說明你的理由.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)的導(dǎo)函數(shù)為,且,當(dāng)恒成立,則使得成立的的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在坐標(biāo)軸上,且經(jīng)過,.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;

(Ⅱ)四邊形的四個頂點都在橢圓上,且對角線,過原點,若,求證:四邊形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊答案