【題目】點(diǎn)F2是雙曲線的右焦點(diǎn),動(dòng)點(diǎn)A在雙曲線左支上,直線l1txy+t20與直線l2x+ty+2t10的交點(diǎn)為B,則|AB|+|AF2|的最小值為(

A.8B.C.9D.

【答案】C

【解析】

由題意求出直線l1,l2的交點(diǎn)B為圓心在(0,﹣2),半徑為1的圓,由雙曲線的定義可得|AF2||AF1|+2a,所以|AB|+|AF2||AB|+|AF1|+6,當(dāng)A,F1B三點(diǎn)共線時(shí),|AB|+|AF2|最小,過(guò)F1與圓心的直線與圓的交點(diǎn)B且在F1和圓心之間時(shí)最小.

由雙曲線的方程可得a3,b,焦點(diǎn)F(﹣20),

可得|AF2||AF1|+2a|AF1|+6,

所以|AB|+|AF2||AB|+|AF1|+6,

當(dāng)AF1,B三點(diǎn)共線時(shí),|AB|+|AF2|最小,

聯(lián)立直線l1,l2的方程,可得,消參數(shù)t可得x2+y+221,

所以可得交點(diǎn)B的軌跡為圓心在,半徑為1的圓,

所以|AB|+|AF2||AB|+|AF1|+6|BF1|+6|MF1|-1+659

當(dāng)過(guò)F1與圓心的直線與圓的交點(diǎn)B且在F1和圓心之間時(shí)最小.

所以|AB|+|AF2|的最小值為9,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,函數(shù)在點(diǎn)處的切線與函數(shù)相切.

1)求函數(shù)的值域;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在梯形中,,點(diǎn)在線段上,且滿足,將沿翻折,使翻折后的二面角的余弦值為,如圖2

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的最小值;

2)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線交拋物線、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使得直線與拋物線在點(diǎn)處的切線平行,設(shè)直線與拋物線交于兩點(diǎn).

1)記直線、的斜率分別為、,證明:;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知邊長(zhǎng)為2的菱形ABCD,其中∠BAD120°,AECF,CF⊥平面ABCD,.

1)求證:平面BDE⊥平面BDF;

2)求二面角DEFB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年非洲爆發(fā)了埃博拉病毒疫情,在疫情結(jié)束后,當(dāng)?shù)胤酪卟块T做了一項(xiàng)回訪調(diào)查,得到如下結(jié)果,

患病

不患病

有良好衛(wèi)生習(xí)慣

20

180

無(wú)良好衛(wèi)生習(xí)慣

80

220

1)結(jié)合上面列聯(lián)表,是否有的把握認(rèn)為是否患病與衛(wèi)生習(xí)慣有關(guān)?

2)現(xiàn)從有良好衛(wèi)生習(xí)慣且不患病的180人中抽取,,5人,再?gòu)倪@5人中選兩人給市民做健康專題報(bào)告,求,至少有一人被選中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為3的正方形,平面ABCD,,EPD中點(diǎn),過(guò)EB作平面分別與線段PA、PC交于點(diǎn)MN,且,則________;四邊形EMBN的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò)分別作拋物線的切線,,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案