【題目】點(diǎn)F2是雙曲線的右焦點(diǎn),動(dòng)點(diǎn)A在雙曲線左支上,直線l1:tx﹣y+t﹣2=0與直線l2:x+ty+2t﹣1=0的交點(diǎn)為B,則|AB|+|AF2|的最小值為( )
A.8B.C.9D.
【答案】C
【解析】
由題意求出直線l1,l2的交點(diǎn)B為圓心在(0,﹣2),半徑為1的圓,由雙曲線的定義可得|AF2|=|AF1|+2a,所以|AB|+|AF2|=|AB|+|AF1|+6,當(dāng)A,F1,B三點(diǎn)共線時(shí),|AB|+|AF2|最小,過(guò)F1與圓心的直線與圓的交點(diǎn)B且在F1和圓心之間時(shí)最小.
由雙曲線的方程可得a=3,b,焦點(diǎn)F(﹣2,0),
可得|AF2|=|AF1|+2a=|AF1|+6,
所以|AB|+|AF2|=|AB|+|AF1|+6,
當(dāng)A,F1,B三點(diǎn)共線時(shí),|AB|+|AF2|最小,
聯(lián)立直線l1,l2的方程,可得,消參數(shù)t可得x2+(y+2)2=1,
所以可得交點(diǎn)B的軌跡為圓心在,半徑為1的圓,
所以|AB|+|AF2|=|AB|+|AF1|+6≥|BF1|+6≥|MF1|-1+65=9,
當(dāng)過(guò)F1與圓心的直線與圓的交點(diǎn)B且在F1和圓心之間時(shí)最小.
所以|AB|+|AF2|的最小值為9,
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,函數(shù)在點(diǎn)處的切線與函數(shù)相切.
(1)求函數(shù)的值域;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在梯形中,,點(diǎn)在線段上,且滿足,將沿翻折,使翻折后的二面角的余弦值為,如圖2.
(1)求證:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線交拋物線于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使得直線與拋物線在點(diǎn)處的切線平行,設(shè)直線與拋物線交于、兩點(diǎn).
(1)記直線、的斜率分別為、,證明:;
(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知邊長(zhǎng)為2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,,.
(1)求證:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年非洲爆發(fā)了埃博拉病毒疫情,在疫情結(jié)束后,當(dāng)?shù)胤酪卟块T做了一項(xiàng)回訪調(diào)查,得到如下結(jié)果,
患病 | 不患病 | |
有良好衛(wèi)生習(xí)慣 | 20 | 180 |
無(wú)良好衛(wèi)生習(xí)慣 | 80 | 220 |
(1)結(jié)合上面列聯(lián)表,是否有的把握認(rèn)為是否患病與衛(wèi)生習(xí)慣有關(guān)?
(2)現(xiàn)從有良好衛(wèi)生習(xí)慣且不患病的180人中抽取,,,,共5人,再?gòu)倪@5人中選兩人給市民做健康專題報(bào)告,求,至少有一人被選中的概率.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為3的正方形,平面ABCD,,E為PD中點(diǎn),過(guò)EB作平面分別與線段PA、PC交于點(diǎn)M,N,且,則________;四邊形EMBN的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線,,與交于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com