【題目】已知中.

(Ⅰ)當(dāng)時,解不等式

(Ⅱ)已知時,恒有,求實數(shù)的取值集合.

【答案】(1);(2).

【解析】分析:(1)當(dāng)時,代入化簡的不等式等價于,即可求解不等式的解集;

(2)法一:由題意得,于是只能,經(jīng)驗證滿足題意,即可得到結(jié)論;

法二:當(dāng)時,恒成立,即恒成立,設(shè),,則問題轉(zhuǎn)化為時,恒成立,即當(dāng)時,恒有,利用函數(shù)的單調(diào)性及函數(shù)的圖象,即可求解.

詳解:(1)當(dāng)時,不等式即為,

等價于,

由數(shù)軸標(biāo)根法知不等式的解集為

(2)法一:由題,,于是只能

時,

當(dāng)時,,,恒有

故實數(shù)

法二:當(dāng)時,恒成立,即恒成立,

不妨設(shè),則問題轉(zhuǎn)化為時,恒成立,即當(dāng)時,恒有,

不難知,上單調(diào)遞減,上單調(diào)遞增,

且函數(shù)的圖象相交于點,

結(jié)合圖象可知,

當(dāng)且僅當(dāng)時,恒成立,故實數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】做一個無蓋的圓柱形水桶,若要使其體積是 ,且用料最省,則圓柱的底面半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2 , a9 , a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足 =an(n∈N*),且b1= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=(
A.[﹣2,4)
B.(﹣1,3]
C.[﹣2,﹣1]
D.[﹣1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的 列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

合計

(參考公式 ,其中 .)

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 的底面 是矩形,平面 平面 , 的中點,且 , .

(Ⅰ)求證: 平面
(Ⅱ) 求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】魅力紅谷灘才藝展示評比中,參賽選手成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如圖所示.

1)根據(jù)圖中信息,將圖乙中的頻率分布直方圖補充完整;

2)根據(jù)頻率分布直方圖估計選手成績的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

(3)從成績在[80,100]的選手中任選2人進(jìn)行PK,求至少有1 人成績在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為 ,且點P在圖中陰影部分(包括邊界)運動.若 =x +y ,其中x,y∈R,則4x﹣y的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在30天內(nèi)每克的銷售價格(元)與時間的函數(shù)圖像是如圖所示的兩條線段,(不包含,兩點);該商品在 30 天內(nèi)日銷售量(克)與時間(天)之間的函數(shù)關(guān)系如下表所示.

5

1

5

2

0

3

0

銷售量

3

5

2

5

2

0

1

0

(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關(guān)系式;

(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關(guān)系式;

(3)在(2)的基礎(chǔ)上求該商品的日銷售金額的最大值,并求出對應(yīng)的.

(注:日銷售金額=每克的銷售價格×日銷售量)

查看答案和解析>>

同步練習(xí)冊答案