【題目】如圖,邊長(zhǎng)為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點(diǎn).
(I)證明:AM⊥PM ;
(II)求二面角P-AM-D的大小.
【答案】(1)見(jiàn)解析; (2)45°.
【解析】
(Ⅰ)以D點(diǎn)為原點(diǎn),分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,求出與的坐標(biāo),利用數(shù)量積為零,即可證得結(jié)果;(Ⅱ)求出平面PAM與平面ABCD的法向量,代入公式即可得到結(jié)果.
(I)證明:以D點(diǎn)為原點(diǎn),分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,依題意,可得
∴
∴
即,∴AM⊥PM .
(II)設(shè),且平面PAM,則
,即 ∴ ,
取,得;取,顯然平面ABCD,
∴,結(jié)合圖形可知,二面角P-AM-D為45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)的圖像與y軸交點(diǎn)的縱坐標(biāo)為1,在y軸右側(cè)的第一個(gè)最大值和最小值分別為和.
(1)求函數(shù)的解析式:
(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)縮小原來(lái)的(縱坐標(biāo)不變),再將所得圖像沿x軸正方向平移個(gè)單位,得到函數(shù)的圖像,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角α=45°,
(1)在-720°~0°范圍內(nèi)找出所有與角α終邊相同的角β;
(2)設(shè)集合,判斷兩集合的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,對(duì)任意,有成立.
(1)求的通項(xiàng)公式;
(2)設(shè),,是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意,恒成立;
(3)設(shè),是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在答題卡上相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將圖象上所有點(diǎn)向左平行移動(dòng)θ()個(gè)單位長(zhǎng)度,得到的圖象.若圖象的一個(gè)對(duì)稱中心為,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t是參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過(guò)曲線C上任意一點(diǎn)A作與直線l的夾角為45°的直線,設(shè)該直線與直線l交于點(diǎn)B,求的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com