為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對他的6次數(shù)學(xué)測試成績(滿分100分)進(jìn)行統(tǒng)計,作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績的說法正確的是(  )
A、中位數(shù)為83
B、眾數(shù)為85
C、平均數(shù)為85
D、方差為19
考點(diǎn):莖葉圖
專題:概率與統(tǒng)計
分析:根據(jù)莖葉圖中的數(shù)據(jù),計算數(shù)據(jù)的中位數(shù)、眾數(shù)、平均數(shù)和方差即可.
解答: 解:根據(jù)莖葉圖中的數(shù)據(jù),得中位數(shù)是
83+85
2
=84,∴A錯誤;
眾數(shù)是83,∴B錯誤;
平均數(shù)是
78+85+83+83+90+01
6
=85,∴C正確;
方差是
1
6
[(78-85)2+(85-85)2+(83-85)2×2+(90-85)2(91-85)2]=19.7,∴D錯誤.
故選;C.
點(diǎn)評:本題考查了莖葉圖的應(yīng)用問題,解題時應(yīng)根據(jù)莖葉圖中的數(shù)據(jù)進(jìn)行有關(guān)的計算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<π,試?yán)萌呛瘮?shù)討論sinα+cosα值的變化.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,
AB
=4
MB
,且PM⊥CD,AB=BC=2PB=2AD.
(1)證明:面PAB⊥面ABCD;
(2)求直線DM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象過點(diǎn)(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
7
4

(1)求f(x)的解析式;
(2)求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在函數(shù)y=2x+m的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①“如果x+y=0,x,y互為相反數(shù)”的逆命題
②“如果x2+x-6≥0,則x>2”的否命題
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件
④“函數(shù)f(x)=tan(x+ϕ)為奇函數(shù)”的充要條件是“ϕ=kπ(k∈Z)”
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x3(x<0)
-tanx(0≤x<
π
2
)
,則f(f(
π
4
))=( 。
A、1B、-2C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是正方體ABCD-A1B1C1D1中BC1上的動點(diǎn),下列命題:
①AP⊥B1C;
②BP與CD1所成的角是60°;
VP-AD1C為定值;
④B1P∥平面D1AC;
⑤二面角P-AB-C的平面角為45°.
其中正確命題的個數(shù)有( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB=1,AA′=2,則直線BC′與平面ABB′A′所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圖1等邊三角形ABC中,AB=2,E是線段AB上的點(diǎn)(除點(diǎn)A外),過點(diǎn)E作EF⊥AC于點(diǎn)F,將△AEF 沿EF折起到△PEF(點(diǎn)A與點(diǎn)P重合,如圖2),使得∠PFC=
π
3

(1)求證:EF⊥PC;
(2)試問,當(dāng)點(diǎn)E在線段AB上移動時,二面角P-EB-C的大小是否為定值?若是,求出這個二面角的平面角的正切值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案