【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點在平面內.
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設二面角的大小為,求的值;
(Ⅲ)求點到面的距離.
【答案】(1)見解析(2)(3)
【解析】試題分析:(1)由三視圖還原(如下圖)可知, H為BC中點, , ,所以和是直角三角形,
(2)由等體積法由可求得點到面的距離。
試題解析:(Ⅰ)補充完整的三棱錐的直觀圖如圖所示;
由三視圖知和是直角三角形.
(Ⅱ)如圖,過作交于點.
由三視圖知, , ,
∴在圖中所示的坐標系下,相關點的坐標為: , , , ,
則, ,
, .
設平面、平面的法向量分別為, .
由, ,得
令, 得, ,即.
由, ,得,
令, 得, ,即.
,
,則.
∵二面角的大小為銳角,∴的值為.
(Ⅲ)記到面的距離為,
由, , , ,
得,
,
, .
又三棱錐的體積,
由,可得: .
科目:高中數學 來源: 題型:
【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相應 x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,能推斷這個幾何體可能是三棱臺的是( )
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3
C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4
D.AB=A1B1 , BC=B1C1 , CA=C1A1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)與f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標準方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的左右頂點分別為A(﹣2,0),B(2,0),橢圓上除A、B外的任一點C滿足kACkBC=﹣ .
(1)求橢圓C的標準方程;
(2)過點P(4,0)任作一條直線l與橢圓C交于不同的兩點M,N,在x軸上是否存在點Q,使得∠PQM+∠PQN=180°?若存在,求出點Q的坐標;若不存在,請說明現由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的右焦點,過點且與坐標軸不垂直的直線與橢圓交于,兩點,當直線經過橢圓的一個頂點時其傾斜角恰好為.
(1)求橢圓的方程;
(2)設為坐標原點,線段上是否存在點,使得?若存在,求出實數的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com