設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題中的假命題是
A.若B.若
C.若D.若
C
解:利用線面平行,面面垂直的判定定理和性質(zhì)定理,我們可以判定得到結(jié)論。選項A,n與平面的關(guān)系平行。選項B中,也是滿足的,選項C中,不成立。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線m、n和平面α、β,若α⊥β,α∩β=m,nα,要使n⊥β,則應(yīng)增加的條件是(   )
A.m∥nB.n⊥m    C.n∥αD.n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,點的中點.
(1) 求所成的角的余弦值;
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b是兩條不重合的直線,是兩個不重合的平面,下列命題中正確的是( )
A.,,則
B.a(chǎn),,,則
C.,則
D.當(dāng),且時,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)(文)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD//BC,BAD=,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點.

(Ⅰ)求證:PB⊥DM;
(Ⅱ) 求CD與平面ADMN所成角的余弦

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點,G為線段PC的中點.
(1)當(dāng)E為PD的中點時,求證:
(2)當(dāng)時,求證:BG//平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中錯誤的是( ).
A.若,則
B.若,,則
C.若,,則
D.若,=AB,//,AB,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,二面角的正切值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案