已知橢圓 的離心率為,過的左焦點(diǎn)的直線被圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說(shuō)明理由.
(1);(2)存在.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),點(diǎn)到直線的距離公式、垂徑定理、兩圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,利用橢圓的左焦點(diǎn)坐標(biāo)、離心率聯(lián)立得到橢圓的基本量a,b,c,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,先利用點(diǎn)到直線的距離公式計(jì)算出點(diǎn)到直線的距離,再利用垂徑定理求出圓的半徑,從而得到圓的具體方程,假設(shè)圓上存在點(diǎn)P滿足條件,利用兩點(diǎn)間距離公式列出方程,經(jīng)整理得到一個(gè)新的圓,利用2個(gè)圓心的距離和半徑的關(guān)系判斷出2個(gè)圓相交,所以說(shuō)明存在兩個(gè)不同的點(diǎn)P.
試題解析:因?yàn)橹本的方程為,
令,得,即 1分
∴ ,又∵,∴ ,
∴ 橢圓的方程為. 4分
(2)存在點(diǎn)P,滿足
∵ 圓心到直線的距離為,
又直線被圓截得的弦長(zhǎng)為,
∴由垂徑定理得,
故圓的方程為. 8分
設(shè)圓上存在點(diǎn),滿足即,
且的坐標(biāo)為,
則,
整理得,它表示圓心在,半徑是的圓。
∴ 12分
故有,即圓與圓相交,有兩個(gè)公共點(diǎn)。
∴圓上存在兩個(gè)不同點(diǎn),滿足. 14分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),點(diǎn)到直線的距離公式、垂徑定理、兩圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓 的離心率為 ,且過點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過原點(diǎn)O,若 .
(i)求 的最值:
(i i)求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為和,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以為圓心且與直線相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:和直線L:="1," 橢圓的離心率,坐標(biāo)原點(diǎn)到直線L的距離為。
(1)求橢圓的方程;
(2)已知定點(diǎn),若直線與橢圓C相交于M、N兩點(diǎn),試判斷是否存在值,使以MN為直徑的圓過定點(diǎn)E?若存在求出這個(gè)值,若不存在說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(1)證明: 為定值;
(2)若△POM的面積為,求向量與的夾角;
(3)證明直線PQ恒過一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的方程為,直線l過定點(diǎn),斜率為k.當(dāng)k為何值時(shí),直線l與該拋物線:只有一個(gè)公共點(diǎn);有兩個(gè)公共點(diǎn);沒有公共點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)A(1,0),B (2,0) .動(dòng)點(diǎn)M滿足,
(1)求點(diǎn)M的軌跡C;
(2)若過點(diǎn)B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點(diǎn)E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相交于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一個(gè)圓上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在下列命題中:
①方程|x|+|y|=1表示的曲線所圍成區(qū)域面積為2;
②與兩坐標(biāo)軸距離相等的點(diǎn)的軌跡方程為y=±x;[來(lái)源:Z,xx,k.Com]
③與兩定點(diǎn)(-1,0)、(1,0)距離之和等于1的點(diǎn)的軌跡為橢圓;
④與兩定點(diǎn)(-1,0)、(1,0)距離之差的絕對(duì)值等于1的點(diǎn)的軌跡為雙曲線.
正確的命題的序號(hào)是________.(注:把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com