11.已知M={-$\frac{1}{2}$,3},N=(x|mx=1},若N⊆M,則適合條件的實(shí)數(shù)m構(gòu)成的集合P為( 。
A.{-2,$\frac{1}{3}$}B.{-$\frac{1}{2}$,$\frac{1}{3}$}C.{0,-2,$\frac{1}{3}$}D.{0}

分析 由N⊆M,可分N=∅和N≠∅兩種情況進(jìn)行討論,根據(jù)集合包含關(guān)系的判斷和應(yīng)用,分別求出滿足條件的m值,并寫成集合的形式即可得到答案.

解答 解:∵N⊆M,N=(x|mx=1},
當(dāng)m=0,mx=1無解,故N=∅,滿足條件
若N≠∅,則N={3},或N={-$\frac{1}{2}$},
∴3m=1或(-$\frac{1}{2}$)m=1.
即m=$\frac{1}{3}$,或m=-2
故滿足條件的實(shí)數(shù)m∈{0,$\frac{1}{3}$,-2}.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,本題有兩個(gè)易錯(cuò)點(diǎn),一是忽略N=∅的情況,二是忽略題目要求滿足條件的實(shí)數(shù)m的取值集合,而把答案沒用集合形式表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x2+y2=a2(a>0),則|xy|的最大值為( 。
A.a2B.$\frac{{a}^{2}}{2}$C.$\frac{{a}^{2}}{4}$D.$\frac{\sqrt{2}{a}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-xlnx,g(x)=ax2(lnx-$\frac{1}{2}$).
(Ⅰ)求曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程(e為自然對(duì)數(shù)的底數(shù),e=2.718…);
(Ⅱ)若函數(shù)F(x)=f(x)+g(x),求F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{2{x}^{2}+2x+1}{{x}^{2}+x+1}$的取值范圍為[-$\frac{2}{5}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+2x+t,x∈[t,t+1].
(1)求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)的最大值為1,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x-1)=x2+x-1,求f(0),f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$短軸長為2$\sqrt{3}$,左、右頂點(diǎn)分別為A、B,F(xiàn)為左焦點(diǎn),且AF:FB=1:3,經(jīng)過F的直線l與橢圓M交于C、D兩點(diǎn).           
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)記△ABD、△ABC的面積分別為S1、S2,當(dāng)|S1-S2|=$\frac{3}{2}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax-a)在區(qū)間(-∞,1-$\sqrt{3}$)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=|x|-2cosx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案