(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分6分.
已知橢圓過點(diǎn),兩焦點(diǎn)為,是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線與橢圓交于兩不同點(diǎn).
(1)求橢圓C的方程;       
(2) 當(dāng)時,求面積的最大值;
(3) 若直線、、的斜率依次成等比數(shù)列,求直線的斜率.
(1),(2)1,(3).

試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,通常利用待定系數(shù)法求解,即只需兩個獨(dú)立條件解出a,b即可. 由,解得所以橢圓的方程為.(2)解幾中面積問題,通常轉(zhuǎn)化為點(diǎn)到直線距離.
當(dāng)且僅當(dāng)時,等號成立 所以面積的最大值為.(3)涉及斜率問題,通常轉(zhuǎn)化為對應(yīng)坐標(biāo)的運(yùn)算. 由消去得:,,,因?yàn)橹本的斜率依次成等比數(shù)列,所以,故
試題解析:[解] (1)由題意得,可設(shè)橢圓方程為     2分
,解得所以橢圓的方程為.   4分
(2)消去得:
              6分
 
設(shè)為點(diǎn)到直線的距離,則 8分

當(dāng)且僅當(dāng)時,等號成立 所以面積的最大值為.     10分
(2)消去得:    12分

     
         14分
因?yàn)橹本的斜率依次成等比數(shù)列
所以
,由于        16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為短軸的一個端點(diǎn),.
(1)求橢圓的方程;
(2)如圖,過右焦點(diǎn),且斜率為的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為.
求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)的直線與橢圓交于,兩點(diǎn).
(ⅰ)若直線垂直于軸,求的大小;
(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是直線被橢圓所截得的線段的中點(diǎn),則直線的方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·浙江高考]如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•陜西)設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•浙江)設(shè)F1,F(xiàn)2分別為橢圓+y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若=5;則點(diǎn)A的坐標(biāo)是 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左、右焦點(diǎn)為,過作直線交C于A,B兩點(diǎn),若是等腰直角三角形,且,則橢圓C的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與橢圓相交于、兩點(diǎn),若橢圓的離心率為,焦距為2,則線段的長是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案