[2013·浙江高考]如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是(  )
A.B.C.D.
D
橢圓C1中,|AF1|+|AF2|=4,|F1F2|=2.
又因?yàn)樗倪呅蜛F1BF2為矩形,
所以∠F1AF2=90°.
所以|AF1|2+|AF2|2=|F1F2|2
所以|AF1|=2-,|AF2|=2+.
所以在雙曲線C2中,2c=2,2a=|AF2|-|AF1|=2,故e=,故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,,右頂點(diǎn)為A,上頂點(diǎn)為B.已知=.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)點(diǎn)的直線與該圓相切與點(diǎn)M,=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分,(1)小問(wèn)4分,(2)小問(wèn)8分)已知為橢圓上兩動(dòng)點(diǎn),分別為其左右焦點(diǎn),直線過(guò)點(diǎn),且不垂直于軸,的周長(zhǎng)為,且橢圓的短軸長(zhǎng)為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)為橢圓的左端點(diǎn),連接并延長(zhǎng)交直線于點(diǎn).求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,
第3小題滿(mǎn)分6分.
已知橢圓過(guò)點(diǎn),兩焦點(diǎn)為、,是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與橢圓交于兩不同點(diǎn)、.
(1)求橢圓C的方程;       
(2) 當(dāng)時(shí),求面積的最大值;
(3) 若直線、的斜率依次成等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線mx+ny=4與⊙O:x2+y2=4沒(méi)有交點(diǎn),則過(guò)點(diǎn)P(m,n)的直線與橢圓=1的交點(diǎn)個(gè)數(shù)是(  )
A.至多為1B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以橢圓的長(zhǎng)軸端點(diǎn)為焦點(diǎn)、以橢圓焦點(diǎn)為頂點(diǎn)的雙曲線方程為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與橢圓相切,且該切點(diǎn)與橢圓的兩焦點(diǎn)構(gòu)成的三角形面積為2,則橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),其離心率
(1)求橢圓的方程;
(2)過(guò)坐標(biāo)原點(diǎn)作不與坐標(biāo)軸重合的直線交橢圓兩點(diǎn),過(guò)軸的垂線,垂足為,連接并延長(zhǎng)交橢圓于點(diǎn),試判斷隨著的轉(zhuǎn)動(dòng),直線的斜率的乘積是否為定值?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案