【題目】某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點,P,Q為長方形ABCD邊AB,BC(不含端點)上的一點.現(xiàn)公園管理處擬修建觀光車道P﹣Q﹣N﹣M﹣P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設BP=x(km),BQ=y(km),
(1)試寫出y關于x的函數(shù)關系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側.經(jīng)測算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.
【答案】
(1)解:∵M,N是AD,CD的中點,AB=8,AD=4,BP=x,BQ=y,
∴S△AMP= =8﹣x,S△DMN= =4,S△NCQ= =8﹣2y,S△BPQ= ,
∵觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),
∴8﹣x+4+8﹣2y+ xy=4×8﹣15=17,
∴y= = .
令0<y<4,即0< <4,解得0<x<3或5<x<8.
(2)解:由題意可知0<x<3,
∴x+y=x+ =x+2﹣ ,
令f(x)=x+2﹣ ,則f′(x)=1﹣ ,
令f′(x)=0得x=4﹣ ,
∴當0<x 時.f′(x)>0,當4﹣ <x<3時,f′(x)<0,
∴f(x)在(0,4﹣ )上單調遞增,在(4﹣ ,3)上單調遞減,
∴當x=4﹣ 時,f(x)取得最大值6﹣2 .
∴所有游客的步行距離之和的最大值為20000×(6﹣2 )=40000(3﹣ )km.
【解析】(1)根據(jù)面積列方程得出y關于x的解析式;(2)利用導數(shù)求出x+y的最大值,從而得出步行距離之和的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大;
(2)若a=4,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),設函數(shù)f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當a=4時,解不等式f(x)≥8;
(2)當a∈[0,4]時,求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關于x的方程f(x)=tf(a)有3個不相等的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三角形的頂點分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點C,且在l上不存在到A,B兩點的距離相等的點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com